
U N I V E R S I T Y OF T A R T U

Faculty of Mathematics and Computer Science

Institute of Computer Science

Riivo Talviste

Deploying secure multiparty
computation for joint data
analysis — a case study

Master’s Thesis (30 ECTS)

Supervisor: Dan Bogdanov, MSc

TARTU 2011

Contents

1 Introduction 4
1.1 Outline . 4
1.2 Author’s contribution . 5

2 Preliminaries 6
2.1 Privacy-preserving data mining . 6
2.2 Sharemind . 7
2.3 Sharemind application’s development process 8

3 Joint analysis of financial data 9
3.1 Problem statement . 9
3.2 The initial solution and its security 9
3.3 Improved solution . 10

4 Application architecture 14
4.1 Overview . 14
4.2 Miner’s web interface . 15
4.3 Miner proxy application . 16
4.4 Miners and data mining algorithms 17
4.5 Presenting the results . 18

5 Web-based controller library 19
5.1 Introduction . 19
5.2 Connecting to the miners . 19

5.2.1 Script tag workaround . 20
5.2.2 HTML5 cross-document messaging API 21

5.3 Random number generation . 22
5.4 Using the library . 24

6 Deployment analysis 28
6.1 Miner setup . 28
6.2 Data collection . 28
6.3 User story . 29

6.3.1 Filling in the form . 29
6.3.2 Sending the data . 31
6.3.3 Submitting the same form twice 33

6.4 Reporting . 34
6.5 Training materials . 36

2

7 Project lifecycle 37
7.1 Timeline . 37
7.2 User problems . 38
7.3 User feedback . 39

8 Conclusion 40

Juhtumianalüüs: turvalise ühisarvutuse rakendamine jagatud
andmete analüüsimisel 41

References 45

Appendix A SecreC source code for sorting data vectors 46

Appendix B User manual for ITL members 47

Appendix C User manual for ITL board
members 50

Appendix D Sharemind miner host setup
manual 53

Appendix E Source code of the JavaScript
controller library 56

3

1 Introduction

Think of a consortium of companies working in the same field. Each of them has its
own customer base and thus its own view of a market segment. However, to make
better business decisions, these companies would also like to have a good overview
of the whole market in general. For example, let us take the food market with
several supermarket chains operating on that market. Each one of them has their
own customer loyalty program that they use to gather data about the customers’
shopping habits. They use that data to perform various shopping cart analyses
(e.g. frequent itemset mining). However, this way each company can only analyze
and predict the habits of its own customer base and they do not have an overview
of the whole food market.

Having a good overview of the whole market could be easily accomplished
by collecting data from all of those companies and computing statistics from the
whole. However, as data is part of their trade secret, companies are usually reluc-
tant to disclose their data so it could be seen and analyzed by others. Furthermore,
if this data also contains customers’ sensitive information, several legal acts apply
that prohibit the companies from disclosing that information [2, 1, 12].

Privacy-preserving data mining and secure computation methods are viable so-
lutions that enable this kind on data analysis without compromising the confiden-
tiality of the data. There are several secure multiparty computation (MPC) frame-
works that could be used in this scenario (VIFF [26], SEPIA [11], Sharemind [6],
JSMC [8]).

In this thesis we analyze the aspects of deploying MPC applications to solve
real life problems. Our work relies on a case study of developing an application
for one consortium, namely the Estonian Association of Information Technology
and Telecommunications (ITL)1.

1.1 Outline

In Section 2 we introduce the concept of secure multiparty computation and give
a brief overview of the Sharemind framework that we are going to use in our case
study.

Section 3 describes the initial problem where a consortium of ICT compa-
nies would like to calculate benchmarking results based on their economic indi-
cators. We point out some security-related shortcomings of the initial solution
based on anonymization and propose a new solution with stronger privacy guar-
antees achieved by using secure MPC.

Section 4 presents a general architecture of how to build privacy-preserving

1http://www.itl.ee

4

http://www.itl.ee

applications using the Sharemind framework with data submission from the web.
All of the main components of the architecture are described in detail.

Section 5 is dedicated to the JavaScript library that is used in the web based
data submission application. We elaborate on how some of the main challenges
like secret sharing the inserted data and sending the shares to the data miners
were overcome. Finally, there is a simple tutorial on how to use the JavaScript
library in a web based data submission form.

Section 6 describes how the idea from Section 3 and the architecture introduced
in Section 4 were used to solve the problem that ITL had. We elaborate on how
the Sharemind data miners were chosen and where all of the components are
deployed. We also walk the reader through the user story of the ITL application.

Finally, Section 7 gives a timeline for the data collection and report generation
processes in the ITL project. We also give a brief summary about the user feedback.

1.2 Author’s contribution

In this section we list the author’s original contributions to this thesis. Since the
beginning of 2010 the author has participated in a Software Technology and Ap-
plications Competence Center (STACC) project. In this project we developed the
first prototype of an online privacy-preserving questionnaire application using the
Sharemind framework. The partner organizations in this project were Cybernet-
ica, Swedbank and Quretec. The general architecture used in the STACC project
as well as the architecture described in the Section 4 of this thesis were inspired
by the work in the author’s bachelor thesis written in 2009 [23]. One of the main
contribution of the author in the STACC project is writing the JavaScript library
that is described in Section 5.

While building the solution for the ITL, the main contributions of the author
include: developing the web-based data submission form and integrating it with
the ITL web page; writing the necessary proxy applications, analysis applications
and SecreC scripts described in Sections 4 and 6; deploying the Sharemind
system; and composing both the user manuals and deployment documentation
mentioned in Section 6.5.

One of the main challenges of this work was overcoming the shortcomings that
web-based applications have compared to the the desktop applications. Specifi-
cally, we had to bypass the Same Origin Policy to connect to different servers from
the web application and find a way to generate cryptographically secure random
numbers in the web browser. Also, the solution that we developed for the ITL is a
distributed application running on three servers with many separate components
on each server. Thus, we tried to make deploying and maintaining this application
easier on different servers.

5

2 Preliminaries

2.1 Privacy-preserving data mining

Collecting and analyzing large data sets is often restricted by confidentiality re-
quirements to avoid anyone’s privacy from being breached. However, often we do
not collect data for the sake of having the individual values, but rather for using
various data mining algorithms to generate models that characterize the whole
data set in general.

Techniques like anonymization and pseudonymization can help protect indi-
vidual values [17], but they also introduce a trade-off between data quality and
the privacy level. Furthermore, there are numerous incidents where identities are
derived from non-identifying attributes [4, 10, 18].

Secure multiparty computation (MPC) is a technique for evaluating a function
with multiple peers so that each of them learns the output value but not each
other’s inputs. There are various ways for implementing secure MPC with different
number of peers and security guarantees. In this work, we concentrate on systems
based on secret sharing (also called share computing systems).

Share computing systems use the concept of secret sharing introduced by Blak-
ley [5] and Shamir [21]. In secret sharing, a secret value s is split into any number
of shares s1, s2, . . ., sn that are distributed among the peers. Depending on the
type of scheme used, the original value can be reconstructed only by knowing all
or a predefined number (threshold t) of these shares. Any group of t or more
peers can combine their shares to reconstruct the original value. However, the re-
sult of combining less than t shares provides no information about the value they
represent.

Secure multiparty computation protocols can be used to process secret shared
data. These protocols take secret shared values as inputs and output a secret
shared result that can be used in further computations. For example, let us have
values u and v that are both secret shared and distributed among all the peers so
that each peer Pi gets the shares ui and vi. To evaluate w = u⊕v, the peers engage
in a share computing protocol and output w in a shared form (peer Pi holds wi).
During the computation, no computing party is able to recover the original values
u or v.

Multiparty computation protocols can be secure in either passive or active
corruption models. In the passive model, an adversary can read all the information
available to the corrupted peer, but it cannot modify it. In this case, the corrupted
peer still follows the predefined protocol, but it tries to deduce the original data
values based on the information available to that peer. This is also known as
honest-but-curious model. In the active model, an adversary has full control over
the corrupted peer. For more properties of secure MPC protocols, see [13].

6

2.2 Sharemind

Sharemind [6] is a distributed virtual machine for performing privacy-preserving
computations. The Sharemind framework can perform various operations on
32-bit integers and vectors of 32-bit integers.

The Sharemind framework allows the developer to write algorithms where
public and private data are separated. The Sharemind virtual machine guaran-
tees that private data is not leaked while such an algorithm is evaluated.

The Sharemind system uses three peers to hold the shares of secret values. In
Sharemind terminology, these peers are miners. The miners are connected with
each other by the network and use secure MPC protocols to evaluate a function
on the secret shared data. The Sharemind computation protocols are provably
secure in the honest-but-curious model with no more than one corrupted party.

Secret sharing of private data is performed at the source and each share is sent
to a different miner over a secure channel. This guarantees that no-one except
the data source will know the original value. Sharemind uses additive secret
sharing scheme in the ring Z232 . Suppose, that we have a secret value s that we
want to share. Let us also assume that we have a function random() that gives us
uniformly distributed random values from the ring Z232 . Additive secret sharing
works like this:

s1 ← random()
s2 ← random()
s3 ← s− s1 − s2

All calculations are done modulo 232, so s1, s2 and s3 are also in the ring Z232 .
Figure 1 shows the most common deployment scenario for the Sharemind

framework. Assume that we have several parties who all have their private data
and are interested in the statistical data analysis results involving data from other
parties. They choose three representatives among themselves who are motivated
to participate in this collective endeavor but at the same time will not collude with
each other. This restriction is necessary to retain the privacy guarantees of the
Sharemind framework. These three parties will host the miners. All participating
parties secret share their data and distribute the shares among the three miners.

The Sharemind framework provides the developers with a controller library.
This library is used by both data sources for inserting the data to the system as
well as analysis applications that order miners to run data analysis algorithms
which are evaluated by using secure MPC protocols. The analysis applications
only receive the final results of the computations. Therefore, after secret sharing
the original data at the source, no party will learn individual values inserted by
those sources, unless they are explicitly made public in the analysis algorithms.

7

Data source #1

Sharemind
miner #2

Sharemind
miner #1

Sharemind
miner #3

Sharemind
virtual machine

.

.

.

input
shares

input
shares

input
shares

Data source #2

Data source #n

Analysis app. #1

Analysis app. #2

Analysis app. #m

.

.

.

output
shares

output
shares

output
shares

Secure
multiparty

computation

Figure 1: Deployment model of the Sharemind virtual machine.

2.3 Sharemind application’s development process

Creating applications with the Sharemind framework involves three main steps.
Firstly, we have to find three independent parties who will host the miners. Each
of those hosts has to set up a server and install Sharemind miner software on it.
All three miners have to be configured properly (firewall rules, encryption keys,
addresses and port bindings) so they can successfully communicate with each other.

Secondly, we have to develop the necessary data-mining applications that take
advantage of the privacy-preserving guarantees that the Sharemind framework
provides. Sharemind has a low-level assembly language that the virtual machine
can execute. As implementing an algorithm in low-level language is tedious and
error-prone, the framework also provides the developers with a more high-level
programming language named SecreC. SecreC [16] is a high-level language
with C-like syntax that is capable of separating public and private data flows.
It means that the public computations are done in an ordinary manner, while
private computations involving sensitive information (shares of secret values) are
evaluated using secure MPC protocols. SecreC applications are compiled into
Sharemind assembly, which is then given to each Sharemind miner and that
can be then executed by the Sharemind virtual machine.

Writing privacy-preserving programs is more convenient with the SecreCIDE
integrated development environment [20], which provides basic project manage-
ment, syntax highlighting and debugging support.

Thirdly, we need to use the Sharemind controller library to build end-user
applications. These applications are used to insert the data into the Sharemind
miners, run analysis on that data and also view the results.

8

3 Joint analysis of financial data

3.1 Problem statement

The Estonian Association of Information Technology and Telecommunications
(ITL) is a non-governmental non-profit organization whose primary focus is to
unite Estonian information technology and telecommunication companies and pro-
mote their co-operation. ITL has over 60 members – Estonian enterprises that
engage in the field of information and communication technology (ICT).

ICT is a fast-growing industry and thus ITL members would like to be able
to compare themselves with other companies in that sector more often than once
a year when the Ministry of Economic Affairs and Communications releases the
annual economic reports. Making business decisions based on this annual report
means making decisions based on data that is about half a year old and this is not
sufficient for such a dynamic industry as ICT.

3.2 The initial solution and its security

There is an initiative within ITL proposing that the organization should collect
some basic economic indicators from its members (in the beginning, only IT compa-
nies) twice a year. Based on these collected indicators, ITL can release anonymized
benchmarking info for each collected indicator to its members. This enables busi-
nesses to compare themselves with the best in the ICT sector.

ITL collects these economic indicators from its members with the following
frequency:

Indicator Collected
total return semi-annually
number of employees semi-annually
percentage of export semi-annually
added value semi-annually
labour costs annually
training costs annually
profit annually

All these seven indicators will be released to the public half a year later anyway,
as they are part of the annual economic report released by the ministry. However,
if ITL collects these indicators by itself, its members would be able to compare
themselves with each other based on more up-to-date information.

Before publishing the results, each indicator is sorted independently to reduce
the risk of identifying some companies by just looking at a set of economic indi-
cators. For example, combining total return, number of employees and profit, it

9

could be easy to identify some IT companies. However, when sorting by each in-
dicator independently, a company that is first when sorted by one indicator might
not be first when sorted by another indicator. Let’s assume that three companies
add the following records into the database:

(company_id=1, field1=111, field2=1234, field3=42314)

(company_id=2, field1=222, field2=2431, field3=12345)

(company_id=3, field1=212, field2=3132, field3=54321)

By removing the identifying information (company ID) and sorting each field sep-
arately, we get the following table where links between the values of a single row
have been removed:

field1 field2 field3
222 3132 54321
212 2431 42314
111 1234 12345

The data flow and visibility to different parties is shown on Figure 2.
Sorting the collected data by each indicator separately gives us a slightly

stronger privacy guarantees than just stripping away the identifying information
(i.e. company name and ID in ITL database). However, all of the collected data
is accessible by ITL board, which consists of the leaders of competing ICT com-
panies. Therefore, ITL member companies might be reluctant to participate and
give away their sensitive economic information.

3.3 Improved solution

To address this problem, we use the Sharemind framework to collect and analyze
the economic information (see Figure 3). That way, all of the collected private
information is secret shared at the source and distributed among three Sharemind
miners. Using the Sharemind framework gives us the additional benefit that no
single party has access to the original data values and this lowers the risk of
anyone misusing the collected information. Also, we have a much lower threat of
insider attacks and unintentional disclosures (i.e. compromise of economic data
by a leaked backup).

After the data has been collected from all of the members, three data miners
engage in secure MPC protocols and sort all the collected economic indicators
independently. These sorted indicators are then published as a spreadsheet and
made accessible to the board members of the ITL. The board will then either give
these spreadsheets directly to all of the members or first calculate some aggregate
values and/or charts and give this edited report to the members. Making the

10

spreadsheet with the sorted values initially only available to the board members
is a necessary precaution to ensure that there is no data leakage. As ITL board
members are elected, they are also trusted by the rest of the ITL members. How-
ever, even the board members will not see any identifying information, as this is
removed while sorting the collected values. The latter is the main advantage of
the described solution using the Sharemind framework over the initial solution
using only anonymization techniques.

Note, that there is an opportunity for further improving privacy of the collected
data. Currently, ITL requires the original values that are independently sorted by
each economic indicator, as it is not sure which further analyses need to be done
on the results. After the first data collection period, when ITL board has agreed
on the analyses to be done, we can implement these analyses with the secure
MPC protocols in the Sharemind framework. In this case, we would not have to
disclose the anonymized data vectors with the original values anymore.

The described solution was proposed to ITL board as an alternative to their
initial solution, as it has stronger privacy guarantees. The board accepted the
proposal and we started to develop the necessary applications. In the following
sections we describe the architecture, its components and their deployment in more
detail.

11

Consortium
member #2

Consortium
member #n

ITL board
members

All ITL
members

1

2

insert
values

Consortium
member #1

1

2

n

...

anonymization
 and sorting

Figure 2: Data flow and visibility in the initial proposed solution.

12

Sharemind
miner #2

Sharemind
miner #1

Sharemind
miner #3

Consortium
member #2

sorting with
secure multiparty
computation

edit
(create charts)

Consortium
member #n

ITL board
members All ITL

members

Sharemind
virtual machine

1
secret
sharing

2 send
shares

3

4

1
secret
sharing

1
secret
sharing

Consortium
member #1

1

2

n

...

1

2

n

...

1

2

n

...

Secure
multiparty

computation

Figure 3: Data flow and visibility in the improved solution using the Sharemind
framework.

13

4 Application architecture

4.1 Overview

This section describes a possible architecture for solving the problem introduced
in Section 1. We have a consortium of companies where each member possesses
its own data but is also interested in aggregate results involving data from other
members. However, the members cannot share their data with each other either
because they are reluctant or prohibited to do so.

In our earlier work [23, 24] we presented a web-based architecture where the
privacy of the data is preserved throughout the whole process — from data source
to analysis. Since then, we have improved the solution by enhancing its usabil-
ity, robustness and security guarantees (for details, see Section 5). The general
deployment scheme for this solution is shown on Figure 4.

Sharemind
miner #2

Sharemind
miner #1

Sharemind
miner #3

Consortium
member ITL board

members

Sharemind
virtual machine

2

send
shares

3

4

Consortium
web page

1
receive data
entry form

receive analysis
application

submit queries and
receive computation
results

Secure
multiparty

computation

Figure 4: Deployment model for the architecture using the Sharemind framework.

The consortium web page is accessible by both its members and its board
members. Firstly, the consortium members receive the data entry form from the
web page and and fill it. Upon submitting this form, all of the inserted values
are secret shared and the shares distributed among the three Sharemind miners.

14

The miners are usually hosted by three members of the consortium. However, they
must be motivated not to collude with each other.

Secondly, the consortium board members can download an analysis application
from the consortium web and use it to make queries to the Sharemind virtual
machine. These queries start the secure multiparty computation process. Upon
finishing the computations, the miners reply with the corresponding aggregated
results.

In real deployment scenario, each Sharemind miner shown on Figure 4 is
actually a (virtual) server consisting of the following parts (see Figure 5):

• A web server with miner’s web front end that receives shares from the sub-
mission form and stores them in a buffer database.

• A proxy application that relays shares from a buffer database to the miner’s
internal database. The proxy applications are used for increased system
robustness and security.

• Sharemind miner instance with its internal database.

Figure 5: Components of a data miner: web server, buffer database, proxy appli-
cation and a Sharemind miner instance.

In the following we will describe all of these components and their roles in more
detail.

4.2 Miner’s web interface

Sharemind miners only work with data from their own databases and it is up
to the application developer to guarantee that the right data is in each miner’s
database. To simplify this process, the Sharemind framework provides a C++
controller library that is used to communicate with the miners. Among other
things, it allows to insert data into each miner’s database. However, we would like
to insert data into the miner’s databases from the web browser and the current

15

version of the Sharemind controller library does not have a web interface. Thus,
we have to take extra steps to receive data from the web and get it into the miner’s
internal database.

For receiving the shares from the online data entry application (submission
form), we have coupled each Sharemind miner with a web server and a simple
web application. This application receives the shares and a randomly generated 32-
bit session identifier, saves them in a buffer database and replies to the submission
form with either a success or an error message. This acknowledgment message is
required, as the Sharemind miners are distributed across the internet and the
online submission form has to know if all of the shares were successfully saved to
avoid data loss. Section 5 gives a more detailed overview of the submission form
and its communication with the miner’s web interface.

4.3 Miner proxy application

Each of the miners is also coupled with a proxy application that loads all the shares
from the corresponding buffer database and uses the controller library to insert
them into the Sharemind miner’s internal database where they can be used for
private computations. However, the Sharemind virtual machine requires that all
three miners have shares from the same data rows and in the same order. It must
not happen that shares from a single data row are present in one or two miners
but not in all three. This restriction is necessary as the data rows in the miners’
databases do not have primary keys or any other identifying information.

To keep the miner’s internal database consistent, the proxy application contacts
the other two proxies running at the same time after it has loaded all the data
rows from the buffer database. Together the three proxy applications find the
intersection of their data rows and sort the result by session identifiers that each
data row has. After that each proxy saves the result to the corresponding miner’s
internal database. During this synchronization process, no secret shared values are
leaked as each proxy application is tied to one miner and does not communicate
with the other two miners directly. Furthermore, calculating the intersection of
the data rows is done using only the session identifiers and no shares of secret
values are sent to each other.

This proxy application can be either run periodically or only once after the
data collection period has ended and before the secure multiparty computations
are performed.

Using buffer databases and proxy applications also makes the data collection
process more robust, as we do not have to use any locking or commiting protocols
to ensure that all miners have the same order of data rows. It also allows us to
clearly separate the data collection and analysis processes so that the Sharemind
miners do not even have to run (listen for connections) while the data is being

16

collected.
In the future, we still plan to embed a simple web server into the Sharemind

miners, so they would be able receive data directly using the HTTPS protocol. This
reduces the architectural complexity of the solution and simplifies the deployment.
Also, it would enable us to develop privacy-preserving applications working in
nearly real-time.

4.4 Miners and data mining algorithms

Sharemind miners are server applications that are listening on a specific port to
receive commands from the controller applications and messages from each other.
The analysis application is a controller application built with the Sharemind
controller library. It orders the miners to start evaluating a predefined algorithm
using secure MPC protocols and then receives the final results. This analysis
application is usually hosted by the party that is interested in the final analysis
results. All the connections between miners and controller applications, as well as
between the miners themselves, are encrypted.

The data analysis algorithms are written in SecreC language, compiled into
Sharemind assembly and given to each miner so it can be executed by the
Sharemind virtual machine.

In our scenario, the data analysis is performed right after the data collection
period has ended. First, the proxy applications synchronize the data sets of the
miners. After that, the analysis application starts the secure multiparty computa-
tion process. Upon receiving the final computation results, the analysis application
saves them to another database in the consortium network. Using this database
makes it easy to present the results in different formats, e.g. as a web page, PDF
report or a spreadsheet for further analysis.

Alternatively, the proxy and analysis applications can be run periodically
throughout the data collection period. This way the computation results are con-
stantly updated to reflect new data records. However, running the proxy and
analysis applications too often introduces a new security risk. A malicious party
who has access to the analysis application’s output, might compare the consecutive
computation results and deduce some individual values from it. For example, if we
use the analysis application to calculate the average value and only one number
is added between two consecutive computations, it is easy to find out the added
number. Therefore, depending on the domain requirements, we should pick the
longest possible interval to update the computation results. This lowers the risk
of an adversary successfully using the aforementioned attack.

17

4.5 Presenting the results

The final computation results stored by the analysis applications are used to create
reports for analysts. A report could be either a spreadsheet, a PDF document or
a web page and include tables, charts or other visual elements created from the
secure multiparty computation results. However, since the details of its form and
contents are specific for each application, we will bring an example of the report
generated for the ITL in Section 6.4.

18

5 Web-based controller library

5.1 Introduction

As discussed in Section 4.2, the Sharemind miners do not have a web inter-
face. However, we would like to conduct web-based surveys and use other appli-
cations where data is collected from web applications. Thus, we have to provide
the Sharemind miners with a web interface ourselves. We chose to couple each
Sharemind miner with a simple web application that receives shares from the
data source (i.e. an online data submission form) and relays them to the miner
itself.

Since we are working with sensitive data, we have to be extra careful when
sending private data across the web. The protocols used by the Sharemind virtual
machine are proved to leak no information. However, we also have to make sure
that we do not compromise the privacy of the shared data between secret sharing
and saving it to the miner’s database. No one except the data owner should be
able to see the original input values. To accomplish this, the data has to be secret
shared at the source and each share sent to a miner so that the communication
cannot be eavesdropped.

In our proposed solution the data owner uses an online data entry form to
submit his or her sensitive information (as seen on Figure 4 in Section 4). The
form is a HTML form with a JavaScript library that handles secret sharing for the
inserted data and sends the shares to the miners.

A similar system for collecting data for secure multiparty computation was
developed in Denmark in 2008 [7]. They used a Java applet for entering data
using a web application. However, we have chosen JavaScript as our development
platform, as it is available in most web browsers by default and we do not depend
on any browser plug-ins (e.g. Adobe R© Flash R©, Microsoft Silverlight R©) or other
software installed in the end user’s computer (e.g. Java). Moreover, using only
HTML and JavaScript makes our data entry application also usable from mobile
devices without any additional effort.

In this section we explain how the data submission form and the JavaScript
library work.

5.2 Connecting to the miners

One of the tasks of the JavaScript library is to communicate with each miner’s web
interface. However, all modern web browsers enforce the Same Origin Policy for
JavaScript applications. This policy restricts JavaScript applications from making
any connections outside the web page origin domain (i.e. the domain that the web
page was loaded from). So the Same Origin Policy only allows to make connections

19

to web pages that have the same domain name (subdomains are also allowed), port
and protocol as the origin domain.

This is a problem, as our JavaScript library needs to connect to three different
miner web servers to securely transmit shares. Since the Sharemind deployment
model requires that the three miners are independent, it is most probable that all
of the miners are deployed in different domains, so each miner host has exclusive
control over its miner. This means that making simple XMLHttpRequest queries
to one of the miners from our JavaScript library would just fail.

Next, we will describe two methods to overcome the restrictions enforced by
the Same Origin Policy — the so-called script tag workaround and HTML5 cross-
document messaging API.

5.2.1 Script tag workaround

The HTML resource tags (e.g. , <script>) are not affected by the Same
Origin Policy, as one may include images and scripts from any domain in his or her
web page. Using the <script> tag to communicate with web pages from remote
domains is often called script tag workaround.

To use this workaround, we have to create a new <script> HTML node and
set its src attribute to the web page we want to send data to. The data itself
should be encoded as query parameters. The GET request to the specified URL
is made automatically right after the created node is inserted to the Document
Object Model (DOM) of the active web page.

One of the restrictions of this approach is that the dynamically loaded page
has to be a valid script file, as it gets executed when the loading is complete. So to
receive more complex data structures, it is wise to encode the data in JavaScript
Object Notation (JSON) [14] format.

Since the <script> tag is dynamically added to the DOM and the page is
loaded in the background, it is also difficult to know when exactly it has finished
loading. One of the solutions is to use JSON with padding (JSONP). The idea
behind this approach is that the loaded data (JSON-encoded body of the loaded
script file) is encapsulated in a JavaScript function call. For example, suppose
that we have a predefined JavaScript function dataHandler in our web page. The
body of the loaded script file should look similar to:

dataHandler(<JSON-encoded data>);

This way the function dataHandler is executed automatically with received data
as argument when the dynamically loaded script is loaded.

In our solution we use the Dojo Toolkit [15] implementation of the script tag
workaround. The Dojo Toolkit is a general purpose JavaScript framework that
speeds up the development process of a web service and it supports all major web

20

browsers. Dojo’s implementation of the script tag workaround also supports JSON
with padding.

As we are dealing with sensitive data, we are using the script tag workaround
over a secure communication channel, i.e. we are using the HTTPS protocol. In
this case, we have to keep in mind that the SSL certificate of the miner web server
has to be already trusted by the user’s web browser. Normally, when a user goes to
a web page who’s certificate is not trusted by the user, he or she is presented with
a choice to either accept the untrusted certificate or leave the page. However, since
the script tag is inserted to the HTML DOM dynamically by JavaScript, there
is no way for the browser to ask user’s permission to use an untrusted certificate
for that connection. In the latter case, the connection fails silently and a timeout
handler (if any) is triggered.

5.2.2 HTML5 cross-document messaging API

With the new HTML5 standard emerging, there is no need for the script tag
workaround anymore. HTML5 introduces a new cross-document messaging API [27]
that allows documents to communicate with each other regardless of their do-
main, but still in a controlled way to prevent any cross-site scripting attacks.
However, since HTML5 cross-document messaging is only supported by the latest
versions of web browsers2, we would like to retain also the support for the script
tag workaround. Thus, the JavaScript library we have developed first checks if the
function window.postMessage() is defined. If it is, the library uses the enhanced
capabilities of HTML5, otherwise, it falls back to using the script tag workaround.

To use the message-passing API, a web page has to have an iframe, an inline
frame element that can load another document in it. The main page and each
iframe can load pages from different domains and they have separate contexts.
However, they can communicate with each other using the HTML5 cross-document
messaging API.

To retain the compatibility with the script tag workaround and avoid writing
the same code twice, we use simple proxy web pages for message-passing. These
proxy pages are located in the same remote domains as the miner web interface
scripts that need to be accessed. Our data submission form page creates three
hidden iframe-s, each of which loads a proxy page from a corresponding miner
server. All of the messages between the form and miners’ servers are first passed
to the proxy pages via the message-passing interface and then forwarded to the
correct endpoint with a simple XMLHttpRequest query made by a proxy page.
The response messages are also sent back to the initial form with the help of the
message-passing interface. The messages themselves are the same JSON-encoded

2Web browsers supporting HTML5 cross-document messaging API: Internet Explorer 8+,
Firefox 3.5+, Safari 4+, Chrome 8+, Opera 10.5+. Data from http://caniuse.com

21

http://caniuse.com

Submission form page

Hidden iframe
with proxy page

JavaScript library
running on that page

Miner web
interface script

Origin domain

Remote domain

2

41

3

using message-passing
using XMLHttpRequest

Figure 6: Communication flow using HTML5 cross-document messaging. All mes-
sages use JSON-encoded data.

messages used with the script tag workaround. Figure 6 depicts the communication
flow when using message-passing capabilities.

As with using the script tag workaround, we load the main page and also
the proxy pages in iframe-s using the HTTPS protocol. This means that the
XMLHttpRequest queries made by the proxy pages also use secure communication
channels. Again, the SSL certificates of those pages must be already trusted by the
user’s web browser, as the iframe-s are hidden and the user has no way to confirm
a security exception in this case. The message-passing communication between
the main page and iframe-s uses domain names to make sure that the messages
originate from the correct source. This communication is not cryptographically
secured as it happens in the user’s web browser where no one can eavesdrop it.

5.3 Random number generation

In Section 2.2 we showed how to implement an additive secret sharing scheme if
we have a random() function that gives us uniformly distributed 32-bit random
integers. However, when we are trying to implement a secret sharing scheme or any
other randomised cryptographic primitive in a client-side web application, we run
into some problems, as we need to have a real implementation of that random()

function.
The first option is to use some web technologies that have built-in random

number generators (RNG). For example, an analogue of Math.random() is present
in most programming languages. However, it does not satisfy our needs, as the
implementation of Math.random() in most web browsers is based on a linear con-

22

gruential generator (LCG). It has been shown that pseudo-random number gen-
erators (PRNG) based on LCGs are vulnerable to attacks [9]. Instead, we have
to use cryptographically secure random values i.e. values that could be used in
cryptographic primitives like key generation, etc.

Modern operating systems provide pseudo-random number generators as a sys-
tem service, as it is more feasible for the operating system to collect entropy from
various hardware events and user input. Both /dev/random in Linux systems and
CryptoAPI in Windows are capable of generating cryptographically secure random
values.

For example, the Java programming language can be used to develop web ap-
plets, which run on client-side. The Java virtual machine also has access to the
PRNG provided by the operating system. Another possibility is to use the Mi-
crosoft Silverlight platform to write interactive web applications that run in user’s
web browser. Silverlight has access to a subset of Microsoft .NET framework,
which also includes RNGCryptoServiceProvider class that is able to generate
cryptographically secure random data using the operating system’s PRNG. How-
ever, we chose not to use Java applets or Silverlight in our project as we wanted
to keep it lightweight and not dependent on any browser plug-ins.

The second option is that the user’s web browser receives some random data
together with the submission form from the server. This works, as the server
definitely has access to the PRNG provided by its operating system. The web
application running in the user’s browser could then use this random data directly
for secret sharing the answers or use it to seed some pseudo-random number gen-
erator for later use. However, this way the server knows all the random values
used by the web application and it would not need all the shares to reconstruct
the original values.

Another viable solution is to use some JavaScript cryptography library that is
able to generate cryptographically secure random numbers. For example, jsCrypto [22]
is able to extract entropy from the user’s interaction on a web page, specifically
mouse movements. A survey conducted by the developers of the jsCrypto library
showed that while users are filling in an online survey, their mouse movements
generate enough entropy to seed a PRNG.

While using such a library seems easier, we propose another solution. Using the
Sharemind framework means that we have to have three independent data miners
that will not collude with each other. Thus, we ask each Sharemind miner for 32
bytes of random data, combine it, and use the combined results for initializing the
Advanced Encryption Standard (AES) block cipher in counter mode. This way
we have constructed a standard PRNG [3] without any single server knowing the
initial seed.

In details, when the web page with the submission form has finished loading, it

23

uses the aforementioned script tag workaround (or HTML5 cross-document mes-
saging, depending on the web browser’s capabilities) to ask each miner for 32 bytes
of random data. The received random values are then bitwise XOR-ed together
and the result is split into two 16-byte parts. These 16-byte parts are used as a
key and nonce respectively to initialize AES in counter (CTR) mode. We use the
jsaes [19] JavaScript implementation of the AES algorithm. The resulting AES
cipher text can be split into 4-byte chunks and used as 32-bit values needed for
secret sharing.

5.4 Using the library

The JavaScript library described in this section (see Appendix E for the source
code) can be easily used by web developers to create online data entry applica-
tions with the ability to perform secret sharing and securely distribute the shares
among the miners. As we used the Dojo Toolkit implementation of the script tag
workaround, we decided to write the whole library as a Dojo module. This makes
using our library more convenient and the developer has all of the other Dojo
functions at his or her disposal.

At first, the developer should create a web page with a simple HTML form
including all the required data fields, for example:

<html>

<head></head>

<body>

<form method="POST" action="">

<input id="input1" type="text" />

<input type="submit" value="Send" />

</form>

</body>

</html>

After this web page has loaded, it should load the main class of our Dojo module
and make a new instance of it:

dojo.require(’stacc.PrivateSurvey’);

var hosts = [

’https://www.host1.com’,

’https://www.host2.com’,

’https://www.host3.com’

];

24

var paths = [

’/survey/’,

’/survey/’,

’/survey/’

];

var survey = new stacc.PrivateSurvey(hosts, paths);

Right after the new instance is created, it starts to collect randomness from
the three miners. Depending on the web browser’s capabilities, it uses either the
script tag workaround or HTML5 cross-document messaging to do this. To get
randomness, the library makes a query to a random.php script present on each
miner’s web interface. This script outputs 32 bytes of random data in a JSON-
encoded message:

{"miner":1,"random":"1c 43 aa 30 85 5e 89 6c a8 96 77 73 7f aa 47

db a8 52 5e a4 9d a0 d8 f1 0e b1 b9 8f fd 48 52 c4",

"success":true,"errno":0,"error":""}

The library uses Dojo events to notify when it has finished doing something.
For example, the library creates a ready event when it has finished collecting the
randomness and successfully initialized the AES block cipher. The developer can
create handlers for those events:

dojo.connect(survey, ’ready’, null, function() {

// Randomness is collected, do something useful.

// For example, enable the ’Send’ button that should be disabled

// at the beginning, as we cannot perform secret sharing

// without initializing PRNG first.

});

When the form is filled and the “Send” button is clicked, the form must not
be submitted as usual, but rather a JavaScript function should be called. This
function should collect all the inserted values from the form and add them to an
AnswerSet. AnswerSet is a collection of key-value pairs to hold the user-inserted
values. The current version of Sharemind supports only one data type, namely
the 32-bit unsigned integer. However, in some applications, we would also like to
work with negative numbers. This is also the case with the ITL application, as
the economic indicator “profit” can be negative. To work with negative numbers,
we treat the unsigned integers of the Sharemind virtual machine as 32-bit signed
integers. When a negative number x is added to a AnswerSet, it is replaced with
a unsigned integer x′ = x mod 232 instead (using non-negative modulus). Of
course, in this case the analysis application has to take into account that values

25

equal to or greater than 231 represent negative values and we have to subtract 232

to get the right value.
After adding all the user-inserted values to an AnswerSet, the function should

invoke the send() function of the previously created PrivateSurvey instance:

function onSubmit() {

dojo.require(’stacc.AnswerSet’);

// Make new answer set for private values:

var as = new stacc.AnswerSet();

// Add the user-inserted values

// For shortness, we omit any input validation here

as.addValue(’input1’, parseInt(dojo.byId(’input1’)));

// Perform secret sharing and distribute the shares:

if (!survey.send(as)) {

// PrivateSurvey.send() returns false if there PRNG is not yet

// initialized. In this case we create a new ’failure’ event.

survey.failure();

}

}

Upon calling the send() function, all the values added to the AnswerSet are
secret shared and a JSON-encoded message including the corresponding shares is
constructed for each miner:

{"type":"save","session":"1477273566","shares":"{

"input1_submitted":"4130807163","input1_value":"2021162429"}"}

The input1_value represents the user input value, while input1_submitted rep-
resents a boolean value (either 1 or 0) of whether this field was actually filled by
the user or not. Since the information about which fields are filled by the user and
which are not, is considered sensitive, this value is also secret shared.

This message is passed on as a query parameter to the save_jsonp.php script
at miner’s web interface. After successfully saving those into the buffer database,
the script answers with a similar JSON-encoded message:

{"miner":1,"session":"1477273566","data":[],"shares":{

"input1_submitted":"4130807163","input1_value":"2021162429"},

"success":true,"errno":0,"error":""}

26

If the JavaScript library receives that kind of success message from each miner,
it creates the success event. However, if at least one of the miners is unable to
save the shares and return an error message, the library creates a failure event
instead. Similarly to the ready event, the developer can create handlers for those
events, for instance, to let the user know if the data was successfully saved or not.

27

6 Deployment analysis

6.1 Miner setup

To use the Sharemind framework and the architecture described in Section 4,
ITL members must first choose three representatives among themselves, who will
host the Sharemind miner software. Choosing the three miners among the ITL
members themselves fulfills all the prerequisites, as:

1. They are motivated to host the miners, as this project would also be bene-
ficial for themselves.

2. They are independent and will not collude with each other as they are also
inserting their own data into the system and want to keep it private.

3. Also, ITL members act on the field of information technology, thus they
have the necessary infrastructure and competence to host a server that runs
a Sharemind miner.

For this project Cybernetica, Microlink and Zone Media were chosen to be
the hosts of the miners. Both Microlink and Zone deployed a virtual machine
that acts as a Sharemind miner in their domain (the corresponding servers are
itl.microlink.ee and itl.zone.ee respectively). Cybernetica uses its research
server (research.cyber.ee) as the miner. All of those servers have an installation
of the Sharemind miner, the proxy application, a web server (Apache) with
miner’s web frontend application and an SQL database engine (MySQL) for the
buffer database.

6.2 Data collection

ITL has a web page http://www.itl.ee that has both public pages and a member
area. All the representatives of ITL member companies can log in to the member
area to access the ITL event calendar, internal documents, etc. In this project,
we decided to integrate the data submission form into the ITL web page member
area, as it would improve usability for the representatives of the member compa-
nies. This way, ITL members can access everything related to ITL from one place
and the environment is also more familiar. Moreover, it allows us to reuse the
authentication mechanisms of the ITL web page without implementing them on
our own. Thus, the users can access the submission form with the credentials they
already have.

The ITL web page uses a content management system (CMS) written in PHP.
By now, this CMS is a legacy software and is no longer supported by its developers.

28

itl.microlink.ee
itl.zone.ee
research.cyber.ee
http://www.itl.ee

As this CMS software is not modular, integrating the submission form required us
to also make some small changes in the CMS code itself.

6.3 User story

6.3.1 Filling in the form

An ITL member can log in to the member area of the web site with his of her
credentials. If the authenticated user has the rights to submit the economic indi-
cators (i.e. the user belongs to the corresponding group), he or she can read about
the goals of collecting economic indicators as well as about the security measures
taken to protect the collected data. After that, the user can go to a page where he
or she is presented with a list of all open economic indicator submission forms (see
Figure 7). According to the initial plan, a submission form is opened for 45 days
after a year has ended (from Jan 1st to Feb 14th) and for 30 days after a half-year
has ended (from Jan 1st to Jan 30th and from July 1st to July 30th).

Figure 7: ITL web page member area. List of all opened forms. This screenshot
is taken in January so both the full year form of 2010 and the form for the second
half of 2010 are open.

Clicking on the link of an opened form loads the form. The submission form
itself is a simple HTML form with a text field for each of the economic indicators
(see Figure 8). Next to the form there are also the logos of the miner hosts.
Beneath each of those logos, there are the status messages for the corresponding
miner. If something goes wrong with the communication, the user can easily see
which miner gave an error and report this.

29

Figure 8: ITL web page member area. The submission form.

Once the web page with the form is loaded, the JavaScript library in it starts
to collect randomness from all of the miners as described in Section 5.3. When the
randomness is successfully received from one of the miners, a status text “Ready”
(“Valmis” in Estonian) appears beneath the corresponding miner host’s logo. Af-
ter collecting randomness from all of the three miners and initializing AES with
it, the “Send” button of the submission form that was initially disabled, is now
enabled. However, if the JavaScript library fails to receive randomness from one
of the miners, it adds a status text “Error” (“Viga” in Estonian) beneath the cor-
responding logo(s) and informs the user with a modal dialog that he or she cannot
continue filling the form at the moment (see Figure 9).

If the randomness is successfully received from all three miners and the user has
finished filling in the form, he or she can then press the (now enabled) “Submit”
(“Esita andmed” in Estonian) button. Now all of the user-inserted values are
parsed (from string to integer) and validated. For the economic indicators, all
inserted values must represent non-negative integers, except for the field “Profit”
(“Puhaskasum” in Estonian) which can also be a negative integer. The fields that
did not pass validation, are colored pink so the user can identify them and correct
the mistakes.

30

Figure 9: ITL web page member area. One of the miners has encountered an error
and the form cannot be submitted at this time.

If all fields pass validation, the user is presented with a modal dialog box (see
Figure 10) where he or she can see all of the values inserted, however, the values
cannot be changed here anymore. This confirmation is necessary for the user to
make sure that all of the values were parsed correctly and there were no errors.
The user can either click the “Confirm and send” (“Kinnita ja saada” in Estonian)
button to secret share those values and distribute them among the miners or the
“Change values” (“Muuda andmeid” in Estonian) button if he or she notices any
mistakes and wants to go back and modify the inserted values.

6.3.2 Sending the data

Upon clicking the “Confirm and send” button in the confirmation dialog, all of
the inserted values are secret shared and each share is sent to one of the miners
along with some public data (randomly generated session identifier, company id).
Also a text “Sending classified data” (“Saadan salastatud andmeid” in Estonian)
is added to the status texts beneath each miner host’s logo. It is important to
notice, that clicking the “Confirm and send” button does not actually submit the
form to the origin server but rather executes a JavaScript function that performs

31

Figure 10: ITL web page member area. Confirmation dialog showing all the
inserted values.

secret sharing and distributes the shares among the three data miners as described
in Section 5.4.

After that, when a success confirmation message is received from one of the
miners, the text “Done” (“Tehtud” in Estonian) is added to the status texts be-
neath the corresponding logo. When the JavaScript library has received a positive
acknowledgment from all of the miners, it also makes a query to the ITL web
server notifying that this company has filled in the form. The user is then notified
with a message that the submission has been successful (see Figure 11) and he or
she is directed back to the page with the list of forms.

However, if sending the shares failed (e.g. a timeout was encountered) or one
of the miners replied with an error message (e.g. the shares could not be saved in a
database), a status text “Error” is added beneath the corresponding logo instead
and the user is notified that the submission has failed. The user can then go back
to the previous page.

32

Figure 11: ITL web page member area. The data submission has been successful.

6.3.3 Submitting the same form twice

Since the freshness of the collected data is important, the data submission forms are
opened only for a short period right after a year or half year has ended. Thus, the
economic indicator values submitted by the companies may not yet have been au-
dited and are subject to change. This means that the representative of a company
may want to resubmit some economic indicators when he or she either receives
some updated information or realizes that he or she has made a mistake while
filling in the form.

However, since all of the inserted values are secret shared in the user’s web
browser and distributed among the three Sharemind miners, the representative
of a company cannot see or edit the values he or she has previously submitted. So
to correct some submitted economic indicators, the user has to refill and submit
the corresponding form again. It is possible to refill and resubmit a given form any
number of times while the form is opened. For each form and each company, only
the latest submitted values are taken into account in the data analysis process.

33

6.4 Reporting

Some reporting capabilities were also integrated with the ITL web page member
area. When an ITL board member logs in to the web page, he or she can see
some additional information on the submission form listing page (see Figure 12).
Board members can also see the list of people who have already submitted their
data and those who have not by clicking the link “Answered people” (“Vastanud”
in Estonian).

Figure 12: ITL web page member area. Board members can also see the list of
companies who have submitted their data. This screenshot is taken after the data
collection period has ended and the reports have been generated, so the links to
submission forms are replaced with links to reports.

When the data collection period is over for some form, the analysis process for
this form is executed as described in Section 4.4. For the first collection period it
was done manually. Firstly, the proxy applications were synchronously executed
on all three miners. After the shares had been copied to the miners’ internal
databases, the analysis application was run, which started the secure multiparty
computations between the Sharemind miners. However, in the future we would
still like to automate the report generating process so that the proxy applications
and the analysis application are automatically started right after the collection
period has ended. As the data collection deadline was postponed several times for
the first collection period (see Section 7.1 for details), we could not automate the
process this time.

As stated in the initial requirements, the only analysis performed on the col-
lected data is to sort each economical indicator independently. Each miner’s in-

34

ternal database has only one table that holds the shares from only one of the
submission forms. This table has two columns for each indicator — one holding
the share that represents the inserted value and another holding the share repre-
senting a boolean value of whether this indicator was actually inserted or not (i.e.
should it be used in the analysis or not).

Each Sharemind miner has a copy of a SecreC script (see Appendix A) that
takes the database table name and the two column names for a given indicator as
parameters. Firstly, the script loads both vectors from the database and multiplies
them value-by-value. This effectively replaces all of the values that were actually
not inserted by zero. It is only a precaution as submitting all of the economic
indicators is compulsory and thus all the values in the boolean vector should
represent the value true (used as 1 in calculations). The multiplication result is
a vector that is then passed to the secure bubble sorting algorithm implemented
for the Sharemind framework by Uddin [25]. This sorting algorithm reorders
the values in the data vector in decreasing order and works correctly even if the
initial vector includes some negative values. Finally, the sorted vector is published,
i.e. the original values are recombined from the shares and sent to the analysis
application. The analysis application executes this SecreC program for each
economic indicator and saves the sorted output vector in a database at the ITL
web page.

According to the Sharemind deployment model (see Figure 4) the analysis
application should be hosted by ITL, as this is the party controlling the data
collection process. However, ITL uses virtual hosting service for its web page
and it is impossible to install command line applications on that server. Thus,
the analysis application was deployed in the Sharemind miner’s host machine at
Cybernetica.

Once the analysis application has saved the sorted indicators in the database,
the board members see a new link “Report (sorted)” in the form listing page
(see Figure 12). Clicking this link for any given form allows the board member
to download a Microsoft Excel spreadsheet with all of the values entered by the
members throughout the data collection period. This spreadsheet (see Figure 13)
has all the inserted values, sorted independently by each economic indicator. The
values for each indicator are shown on a separate worksheet to avoid confusion. If
all of the indicators (columns) were on the same worksheet next to each other, it
might give the impression that one row represents the data for a single company.
However, since the indicators were sorted separately, this is not the case. Moreover,
splitting the sorted vectors to separate worksheets also makes further data analysis
(e.g. reordering) simpler.

Once the board members have gone over the spreadsheet and made the nec-
essary enhancements (e.g. analyzed data and created charts) they can make the

35

Figure 13: Example report opened in Microsoft Excel. The economic indicator
values shown here are randomly generated for illustrative purpose.

report available to other ITL members.

6.5 Training materials

To aid the users in filling in the submission form, we have created a user manual
that describes all the necessary steps (see Appendix B, in Estonian). This manual
includes an introduction where an ITL board member explains the background and
motivation behind this sort of data collection. This is necessary to show other ITL
members that the initiative comes within the ITL itself and collecting information
about the economic indicators benefits all of the its members. Users are also
notified about the privacy-preserving measures taken in this project, including the
improvements achieved by using the Sharemind framework. This also allows the
ITL members to further research the secure multiparty computation topic and
learn about the privacy guarantees it gives.

There is also a guide for ITL board members on how to access the list of people
who have submitted a given form and how to download the report (Microsoft Excel
spreadsheet) (see Appendix C, in Estonian).

As this project is the first real life application of the Sharemind framework, we
also recorded all the necessary steps how to install and configure a web server, SQL
database engine and a Sharemind miner on a (virtual) server. This documen-
tation (see Appendix D) will help system administrators to set up the necessary
infrastructure if they want to host a miner in their domain.

36

7 Project lifecycle

7.1 Timeline

According to the initial schedule, the first data collection period should have been
in the beginning of 2011, where there would be two open forms:

• the second half of 2010 (4 indicators), opened from Jan 10 to Jan 30;

• the whole year of 2010 (6 indicators3), open from Jan 10 to Feb 14.

However, ITL had also a new authentication method developed for their web site
at that time and they preferred not to start the data collection period before this
new feature had been fully deployed and tested. Finally the new authentication
system was successfully deployed on Feb 4th. After that ITL decided to conduct
the first data collection from Feb 9th to Feb 28th for both forms. They sent an
invitation to a subset of 29 ICT companies from their members to submit their
economic data on the ITL web page.

By the Feb 28th, only 7 companies had filled in the whole year form and 4
companies had filled in the form for the second half of 2010. Thus, ITL sent a
new reminder to the companies and postponed the form submission deadline to
Mar 4th. When the extended submission period ended on Mar 4th, there were
28 submissions in total by 17 different companies. This means that some of the
companies had only submitted one of the two forms. After brief consideration,
ITL board decided that the forms should be reopened for yet another week (Mar
10th - 18th).

Finally, the collection period was closed on March 18th. By this time, 17
companies had filled in the whole year form and 12 companies had filled in the
form for the second half of 2010. On March 22nd we started the secure multiparty
computation process and the resulting sorted economic indicators were published
as a Microsoft Excel spreadsheet on the ITL web page for its board members.

However, ITL board did not forward the reports to ITL members right away.
On April 13th a representative of the ITL board contacted us to ask if it would
be possible to also calculate some ratios like added value divided by the number
of employees, labor costs divided by the number of employees and training costs
divided by labor costs. Since private division (i.e. division using secret shared
data) is already implemented in the Sharemind framework, calculating the rel-
ative values can be easily accomplished by just dividing the two corresponding
vectors.

3As 2010 was also the year of economic crisis, ITL decided not to ask companies to fill in the
“profit” field for this period as it might be abnormally low for many companies. Thus, asking to
fill this field could demotivate the companies from filling in the forms altogether.

37

Secondly, the representative of the ITL board was interested to see how the
economic indicator values have changed between the periods of the submitted
forms. Since we only have data from the second half of 2010 and from the full year
of 2010, we can compare indicator values from these periods. However, it does not
make sense to just compare the averages of those two periods as the number of
companies who filled in the two forms are different. From the 17 companies who
submitted the full year form and the 12 companies who submitted the form for
the second half of the year 2010, only 11 companies filled in both of the forms.
We can easily find those 11 companies as the company ID is present for each data
row in the buffer databases. So for each economic indicator we have two vectors of
11 elements. To allow further analysis of the data but at the same time preserve
its privacy, we just sorted the data vectors as in the initial report. We changed
the bubble_sort SecreC function shown in Appendix A to preserve the data
row associations between two vectors while sorting by the values of one vector.
Of course, this kind of analysis will be more useful in the future when we have
collected data for more than one year.

These two additional reports were sent to the ITL board on April 20th and on
April 25th respectively. ITL board published them to all of the ITL members on
April 28th.

7.2 User problems

After ITL board had published the final reports to its members, there was only one
noticeable problem. A representative of one ITL member company could not find
the value of labour costs he had entered from the report. However, he recognized
all the other five values he had entered in that form and the ITL board verified
that the company was also in the list on companies who had filled in the form for
year 2010. We also made sure that the data row with the corresponding company
ID was present in all three data miners’ databases.

As this was the only reported case of missing data and the other five indicators
entered by that company were present, we have no reason to believe that the
secure multiparty calculations were faulty. Most probably the representative of the
company had just forgotten the exact value he had entered in the data submission
form.

To alleviate the risk of having this kind of problems in the subsequent data
collecting periods, we plan to enable saving of the inserted values to the user’s
computer. After the user has successfully submitted the form, he or she is again
presented with the inserted values so they could be saved to the disk.

38

7.3 User feedback

After publishing all the reports to its members, ITL board stated that it was
pleased with the overall data collection and analysis process and would like to
carry on collecting the economic indicators twice a year. We have already agreed
on some new features (e.g. saving the inserted values to the user’s computer) for
the next data collection period. This time, we hope to get ITL members to fill
in their data more quickly so we could stay in schedule and automate the data
analysis process like it was initially planned. Based on the reports generated for
the previous data collection period, ITL board will decide which kind of data
analyses will be required for future reports.

ITL board sees this economic benchmarking data collection as a long term
effort. When ITL has collected this data for a couple of years, we can generate
extra reports including time series of different economic indicators. This data
would be most valuable to the ITL members.

39

8 Conclusion

In this thesis we elaborate on a scenario where we have several companies working
on the same field, who would like to collaborate to analyze the market in a whole.
To run statistical analysis on their data, they would have to gather the data to
one place. However, companies are reluctant to share their data as it provides
them business value. Moreover, if their data includes some personal information
of their customers, they are prohibited by the law to share it. In particular, we
concentrate on the case of ITL — a consortium of IT companies in Estonia. ITL
members are interested in the ICT sector analysis, but do not want to share their
economic data.

We analyze the given problem and propose a solution using the Sharemind
secure multiparty computation (MPC) framework. As the data collection is done
using a web-based submission form and the Sharemind miners do not have a web
interface, one of the main challenges is to perform secret sharing in the user’s com-
puter and distribute the shares securely among the data miners. For this reason
we have developed a JavaScript library that takes care of collecting randomness
and performing secret sharing in a web browser. Also we have built a proxy appli-
cation that interfaces the Sharemind miner with a web server to receive shared
data.

This implementation was successfully tested within ITL at the beginning of
this year, when ITL collected the economic indicators for the year 2010 from its
members. In this thesis, we have documented the timeline and all of the analysis
done with the secret shared data. We have received positive feedback from the ITL
board, stating that they would like to continue using the system we have deployed.

To the best of author’s knowledge, the ITL application is the first real life ap-
plication where secure multiparty computation techniques are used for joint data
analysis. The success of this project has shown that secure MPC applications are
indeed usable in solving real problems. With this kind of applications we are able
to provide various organizations with data analysis results that are otherwise com-
plicated or even impossible to acquire due to legal or organizational restrictions.

40

Juhtumianalüüs: turvalise ühisarvutuse

rakendamine jagatud andmete analüüsimisel

Magistritöö (30 EAP)

Riivo Talviste

Resümee

Vaatleme olukorda, kus grupp samal alal tegutsevaid ettevõtteid soovib analüüsida
oma tegevusvaldkonda. Igaühel neist on oma klientuur, kuid selle uurimisest üksi
on vähe. Ettevõtete juhid on huvitatud terve valdkonna ja selle klientide analüüsist,
et tulemuste põhjal ärilisi otsuseid langetada.

Kogu valdkonna analüüsiks tuleks vastavatelt ettevõtetelt nende tegevusnäitajad
ühte kohta kokku koguda, et neid saaks korralikult analüüsida. Samas ei ole ette-
võtted aga oma info jagamisest huvitatud, kuna see on üks osa nende ärisaladusest.
Veelgi enam — kui see info peaks sisaldama ka näiteks ettevõtte klientide isiklikke
andmeid, siis on sellise info jagamine teistele osapooltele seadusandlusega keelatud.

Sellise probleemi lahendamiseks on välja töötatud turvalised ühisarvutuse skee-
mid. Delikaatsete andmete privaatsuse säilitamiseks jagatakse kõik andmed esmalt
osakuteks ning jagatakse mitme sõltumatu osapoole vahel laiali. Kuna iga osak
näeb välja nagu juhuslik arv, ei saa üksi osapool oma valduses olevate andme-
te põhjal teha mingeid järeldusi algandmete kohta. Samas on aga mitme osa-
poole valduses olevaid osakuid kombineerides võimalik taastada algsed andmed.
Ühissalastatud andmete peal on võimalik teha ka arvutusi, kasutades selleks turva-
lise ühisarvutuse protokolle. Nende protokollide abil on võimalik arvutada funkt-
siooni väärtusi ühissalastatud andmete peal nii, et kõik osapooled saavad teada
funktsiooni lõpptulemuse, kuid mitte ühtegi vahepealse arvutuse tulemust.

Käesolev töö keskendub eelpool kirjeldatud probleemi ühele konkreetsele näitele.
Infotehnoloogia ja Telekommunikatsiooni Liit (ITL) on mittetulundusühing, mis
ühendab enam kui 60 info- ja kommunikatsioonitehnoloogia (IKT) alal tegutsevat
ettevõtet Eestis. Kuna IKT on kiiresti arenev majandussektor, on need ettevõtted
huvitatud ajakohaste majandusnäitajate võrdlemisest, et langetada paremaid stra-
teegilisi otsuseid.

Et ITL saaks neid andmeid turvaliselt koguda ja analüüsida, pakkusime välja
lahenduse, kus kasutame Sharemindi raamistikku. Sharemind on hajus andme-
baasi- ja rakendusserver, mis hoiab andmeid ühissalastatud kujul ning kasutab
turvalise ühisarvutuse protokolle tagamaks, et üksikud algväärtused andmeanalüüsi
käigus ei lekiks. Ühissalastatud andmete hoidmiseks kasutab Sharemind kolme
sõltumatut osapoolt ehk andmekaevurit.

41

ITL-i rakenduse puhul toimub majandusnäitajate sisestamine ITL-i veebilehel
asuva andmesisestusvormi abil. Sel juhul peab sisestatud andmete ühissalastus
toimuma kasutaja veebilehitsejas, kuna Sharemindi pakutava privaatsusgarantii
toimimiseks ei tohi algkujul olevad andmed kasutaja arvutist lahkuda. Saadud
osakud tuleb seejärel jagada kolme Sharemindi andmekaevuri vahel. Ka see osu-
tub probleemiks, kuna praegusel andmekaevuri versioonil puudub veebiliides. Et
tekkinud takistusi lahendada, kirjutasime JavaScripti teegi, mis tegeleb kasutaja
veebilehitsejas andmete ühissalastusega ning tekkinud osakute saatmisega and-
mekaevuritele. Iga Sharemindi andmekaevuri ühendasime veebirakendusega, mis
kasutajalt osakuid vastu võttis ning spetsiaalse vahendusprogrammi abil andme-
kaevurini toimetas.

Kirjeldatud lahendust kasutas ITL selle aasta alguses, et koguda oma liikmete
majandusnäitajaid 2010. aasta kohta. Käesolevas töös on kirjeldatud nii kasutatud
lahenduse tehnilised aspektid ja andmeanalüüs kui ka projekti ajaline käik. ITL-i
juhatus on esimese andmekogumisperioodi tulemustega rahul ning soovib antud
rakenduse kasutamist kindlasti jätkata.

Autori andmetel on väljatöötatud rakenduse näol tegemist esimese reaalsest
elust pärit probleemi lahendusega, kus turvalist ühisarvutust kasutatakse jagatud
andmete analüüsiks. ITL-i rakenduse edu näitab, et taoliste lahendustega saab
ka tulevikus pakkuda organisatsioonidele selliseid andmeanalüüsi tulemusi, mille
leidmine ilma turvalise ühisarvutuse tehnoloogiata oleks raskendatud või lausa
võimatu.

42

References

[1] Personal data protection act. RTI, 16.03.2007, 24, 127; Published online at
http://www.legaltext.ee/text/en/XXXX041.htm. Last visited on May 29,
2009.

[2] Isikuandmete kaitse seadus. 15.02.2007. - RT I 2007, 24, 127; RT I, 30.12.2010,
2, 2007.

[3] NIST SP 800-90, Recommendation for Random Number Generation Using
Deterministic Random Bit Generators, 2007.

[4] M. Barbaro and T. Zeller. A face is exposed for AOL searcher no. 4417749.
New York Times, 9:2008, 2006.

[5] G.R. Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979
AFIPS National Computer Conference, pages 313–317, Monval, NJ, USA,
1979. AFIPS Press.

[6] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for
fast privacy-preserving computations. In ESORICS, pages 192–206, 2008.

[7] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas
Toft. Multiparty computation goes live. Cryptology ePrint Archive, Report
2008/068, 2008. http://eprint.iacr.org/.

[8] Peter Bogetoft, Ivan Damg̊ard, Thomas Jakobsen, Kurt Nielsen, Jakob
Pagter, and Tomas Toft. A practical implementation of secure auctions based
on multiparty integer computation. In Proc. of Financial Cryptography ’06,
volume 4107 of LNCS, pages 142–147. Springer, 2006.

[9] J. Boyar. Inferring sequences produced by pseudo-random number generators.
Journal of the ACM (JACM), 36(1):129–141, 1989.

[10] Tønnes Brekne, André Årnes, and Arne Øslebø. Anonymization of ip
traffic monitoring data: Attacks on two prefix-preserving anonymization
schemes and some proposed remedies. In George Danezis and David Mar-
tin, editors, Privacy Enhancing Technologies, volume 3856 of Lecture Notes
in Computer Science, pages 179–196. Springer Berlin / Heidelberg, 2006.
10.1007/11767831 12.

43

http://www.legaltext.ee/text/en/XXXX041.htm
http://eprint.iacr.org/

[11] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.
SEPIA: privacy-preserving aggregation of multi-domain network events and
statistics. In Proc. of USENIX Security 2010, USENIX Security’10, pages
15–15. USENIX Association, 2010.

[12] European Council. Directive 95/46 on the protection of individuals with
regard to the processing of personal data and on the free movement of such
data. OJ L 281, 1995.

[13] Ronald Cramer and Ivan Damg̊ard. Multiparty computation, an introduction.
Course Notes, 2004.

[14] D. Crockford. RFC 4627: JavaScript Object Notation. 2006.

[15] The Dojo Foundation. The Dojo Toolkit. Published online at http://www.

dojotoolkit.org/. Last visited on April 7, 2010.

[16] Roman Jagomägis. SecreC: a Privacy-Aware Programming Language with
Applications in Data Mining. Master’s thesis, Institute of Computer Science,
University of Tartu, 2010.

[17] Hillol Kargupta, Souptik Datta, Qi Wang, and Krishnamoorthy Sivakumar.
Random-data perturbation techniques and privacy-preserving data mining.
Knowledge and Information Systems, 7(4):387–414, 2005.

[18] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large
sparse datasets. In Proc. of IEEE S&P ’08, pages 111–125. IEEE Computer
Society, 2008.

[19] B. Poettering. jsaes: AES in JavaScript. Published online at http:

//point-at-infinity.org/jsaes/. Last visited on April 7, 2010.

[20] Reimo Rebane. An integrated development environment for the SecreC pro-
gramming language. Bachelor’s thesis, Institute of Computer Science, Uni-
versity of Tartu, 2010.

[21] Adi Shamir. How to share a secret. Commun. ACM, 22:612–613, November
1979.

[22] Emily Stark, Mike Hamburg, and Dan Boneh. Symmetric Cryptography in
Javascript. In Annual Computer Security Applications Conference, 2009.

[23] Riivo Talviste. Web-based data entry in privacy-preserving applications.
Bachelor’s thesis, Institute of Computer Science, University of Tartu, 2009.

44

http://www.dojotoolkit.org/
http://www.dojotoolkit.org/
http://point-at-infinity.org/jsaes/
http://point-at-infinity.org/jsaes/

[24] Riivo Talviste and Dan Bogdanov. An improved method for privacy-
preserving web-based data collection. Cybernetica research report T-4-5,
2009.

[25] Abu Hamed Mohammad Misbah Uddin. Privacy Preserving Collaborative
Anomaly Detection Using Secure Multi-party Computation. Master’s thesis,
Institute of Computer Science, University of Tartu, 2010.

[26] VIFF development team. The Virtual Ideal Functionality Framework. http:
//viff.dk, 2007-2011.

[27] W3C. HTML5 Web Messaging, W3C Working Draft 17 March 2011. Pub-
lished online at http://www.w3.org/TR/webmessaging/. Last visited on May
21, 2011.

45

http://viff.dk
http://viff.dk
http://www.w3.org/TR/webmessaging/

Appendix A SecreC source code for sorting data

vectors

void main (public s t r i n g tab le , public s t r i n g value column ,
public s t r i n g submitted column) {

public int num rows ; num rows = dbRowCount(t a b l e) ;

stack dbPushColumn (value column , t a b l e) ;
private int [num rows] da ta va lue s ;
da ta va lue s = stack popVector (num rows) ;

stack dbPushColumn (submitted column , t a b l e) ;
private int [num rows] data submitted ;
data submitted = stack popVector (num rows) ;

private int [num rows] data ; data = data va lue s ∗ data submitted ;

private int [num rows] so r t ed ; so r t ed = bubb l e so r t (data) ;
public int [num rows] psorted ; psorted = d e c l a s s i f y (so r t ed) ;

pub l i sh (” so r t ed ” , psorted) ;
}

// Ob l i v i ou s bubb l e s o r t i n g (in decreas ing order)
// From Uddin ’ s master t h e s i s
private int [] bubb l e so r t (private int [] data) {

public int n ; n = vecLength (data) ;
private int a ; private int b ;
private bool comp ;
private int c ; private int invc ;
public int i ; public int j ;

for (i = n−1; i >= 1 ; i=i −1) {
for (j = 0 ; j < i ; j=j +1) {

a = data [j] ;
b = data [j +1] ;
comp = (a > b) ;
c = boolToInt (comp) ;
invc = 1 − c ;

data [j] = a∗c + b∗ invc ;
data [j +1] = a∗ invc + b∗c ;

}
}

return data ;
}

46

Appendix B User manual for ITL members

This document was sent to each ITL member company that was asked to submit
its economic indicators. The user manual includes a short introduction with the
motivation for collecting the economic indicators. The users are also informed
about the Sharemind framework that is used for privacy-preserving data analysis.
The main part of the manual is a user story that guides the user through the data
submission process.

47

ITL majandusinfo kogumise süsteem

Andmekogumisvormi kasutusjuhend

Milleks andmeid kogume?

Eesmärk on anda juhtidele võimalus enda ettevõtte võrdlemiseks sektori parimatega. Mitte ainult
sektori keskmisega, vaid ka parimatega!

Auditeeritud andmed on Äriregistris avalikud alles järgmise aasta teises pooles. Juhtimiseks, eriti
dünaamilises IKT valdkonnas, on vaja infot aga kiiremini, isegi juhul, kui seetõttu info on ebatäielik
või isegi natuke ebatäpne.

Kogume andmeid kaks korda aastas kiiresti peale poolaasta lõppu, küsime ainult 6 juhtimiseks
kõige olulisemat numbrit ja töötleme andmeid väga turvaliselt. Loomulikult ei pruugi need numbrid
olla auditeeritud, aga ülim täpsus ei olegi oluline.

Kogume andmeid ennenägematult turvaliselt

Mõistagi on enda majandustulemuste kiire avaldamine headele konkurentidele kõhedust tekitav.
Appi tuli Cybernetica oma uudse konfidentsiaalsete andmete töötlemise tehnoloogiaga Sharemind
(http://research.cyber.ee/sharemind/). Kogutavad andmed jagatakse sisestamise hetkel kolmeks
osaks, mis eraldi vaadeldes näevad välja juhuslike väärtustena. Iga osa salvestatakse ühe
andmekoguja juures (ITLi majandusinfo kogumisel on andmekogujateks Cybernetica, Microlink ja
Zone Media). Andmeid töödeldakse turvalise ühisarvutuse protokollidega nii, et sisendväärtuseid ei
näe ükski andmekogujatest.

Kui andmekogumine on lõppenud, sorteeritakse Sharemindi abil iga tunnus eraldi tabelisse ja
anonümiseeritakse. Niimoodi valminud tabelid saadame kõigile ITL liikmetele.

Vormi leidmine ITL-i veebilehel

1. Minge veebilehele www.itl.ee ning logige oma kasutajanime ja parooliga sisse.
2. Valige lehe ülemisest menüüst alajaotus Liikmetele.
3. Lehe vasakusse serva tekkinud menüüst valige Majandusinfo kogumine.
4. Valige Andmete sisestamine. Kui avaneb tühi leht, siis võib see olla põhjustatud sellest, et

teil puuduvad lehele juurepääsuks vajalikud õigused. Palun võtke ühendust ITL-iga!

Andmete sisestamine

Andmeid ootame 45 päeva jooksul peale aasta ja poolaasta lõppu. Enne kui kõik on oma andmed
sisestanud, kokkuvõtvaid tabeleid ei tehta. Seda selleks, et vältida anonümiseerimise reverse
engineeringut.

Näide: juuresoleval pildil kujutatud olukorras on
hetkel täitmiseks avatud 2010. aasta II poolaasta
vorm ja kogu aasta vorm.

48

Valides mõne Esita andmed linkidest avaneb leht majandusandmete sisestamiseks vajaliku vormiga.
Poolaasta vormil on vaja täita neli välja ja aasta vormil seitse. Tasub tähele panna, et sisestada saab
ainult täisarve eurodes ning protsentuaalsete andmete puhul (näiteks ekspordi osakaal) peab
sisestatud arv jääma vahemikku 0 – 100.

Lehe parempoolses servas on kolme konfidentsiaalse andmetöötluse eest vastutava koostööpartneri
(Cybernetica, Microlink ja Zone Media) logod ning serverite olekuteated. Mõned sekundid peale
lehe laadimist peaks iga logo alla tekkima kiri „Valmis“, mis tähendab, et antud serveriga on
ühendus loodud. Kui ühendus on loodud kõigi kolme serveriga, siis aktiveeritakse ka vormi all olev
nupp Esita andmed, mis alguses oli mitteaktiivne.

Juhul, kui mõne logo alla tekib hoopis kiri „Viga“, siis ei saadud vastava serveriga ühendust ning
majandusandmeid ei ole hetkel võimalik esitada. Sel juhul palun saatke antud lehest tehtud
ekraanitõmmis süsteemi tehnilise toe aadressile. Aadressi leiate juhendi lõpust.

Kui viga ei tekkinud ning kõik vormi väljad on täidetud, võib vajutada nupule Esita andmed. Kui
mõnele väljale sisestatud arvud on vigased, siis läheb vastav väli roosaks. Sel juhul tuleb tuleb
vastav väärtus korrigeerida ning uuesti vajutada nupule Esita andmed.

Kui kõik väljad on korrektselt täidetud, ilmub
ekraani keskele andmete kinnitamise aken (vt.
kõrvalolevat joonist), kus on näha kõik
sisestatud väärtused. Vajadusel võib teha
vormis korrektuure, vajutades nupule Muuda
andmeid.

Andmete esitamiseks vajutage nupule Kinnita
ja saada. Selle peale peaks kõigi kolme
osapoole logo alla lisanduma teade „Saadan
salastatud andmeid“ ning seejärel „Tehtud!“
Peale seda ilmub ekraani keskele aken teatega
„Andmete saatmine õnnestus.“ ning te võite
tagasi pöörduda majandusinfo kogumise
esilehele, vajutades nuppu Mine esilehele.

Juhul kui teadete „Saadan salastatud andmeid“
või „Tehtud!“ asemel ilmub mõne logo alla kiri
„Viga“, katkestatakse andmete saatmine ning
ilmub teade „Andmete saatmine ebaõnnestus.“
Sel juhul saatke jällegi antud lehest tehtud
ekraanitõmmis tehnilisele toele.

Kui teil on küsimusi

Kui teil on küsimusi andmekogumise eesmärkide kohta, siis neid aitavad selgitada ITL projektijuht
/nimi ja kontaktandmed eemaldatud/ ja ITL juhatuse liige /nimi ja kontaktandmed eemaldatud/.
Tehniliste küsimuste või vigade tekkimisel aitavad teid /nimi ja kontaktandmed eemaldatud/ ja
/nimi ja kontaktandmed eemaldatud/.

49

Appendix C User manual for ITL board

members

This document was created for the ITL board members. It describes the reporting
capabilities built into the ITL web page member area.

50

ITL majandusinfo kogumise süsteem

Andmekogumisvormi kasutusjuhend juhatusele

Vormi leidmine ITL-i veebilehel

1. Minge veebilehele www.itl.ee ning logige oma kasutajanime ja parooliga sisse.
2. Valige lehe ülemisest menüüst alajaotus Liikmetele.
3. Lehe vasakusse serva tekkinud menüüst valige Majandusinfo kogumine.
4. Valige Andmete sisestamine. Ekraanile peaks ilmuma sarnane tabel, nagu kujutatud allpool

oleval joonisel. Kui avaneb tühi leht, siis võib see olla põhjustatud sellest, et teil puuduvad
lehele juurepääsuks vajalikud õigused. Palun võtke ühendust ITL-iga!

Antud tabelis kujutatud linke Vastanud ja Raport (sorteeritud) näevad ainult ITL liikmed, kes
kuuluvad gruppi Juhatus.

Vastanute nimekiri

Valides lingi Vastanud, avaneb leht, kus on kaks nimekirja – need on on vastava aasta/poolaasta
andmed juba esitanud ja need, kes seda veel teinud ei ole. Iga inimese nime järel on välja toodud ka
tema e-posti aadress, et oleks mugav meeldetuletusi saata.

Nendes nimekirjades ei ole mitte kõik ITL liikmed, vaid ainult need, kes peaks oma majandustulemusi
selle süsteemi kaudu teatama – s.t. inimesed, kes kuuluvad gruppi Majandusinfo.

Raportite allalaadimine

Lõppenud andmekogumise perioodide kohta, mille vastav vorm on suletud ja tulemused arvutatud, on
võimalik alla laadida raportit. Klikkides lingile Raport (sorteeritud), pakutakse allalaadimiseks (või
laetakse kohe alla – olenevalt teie veebilehitseja seadistusest) vastava perioodi raportit.

Raport ise on Exceli fail (.xls formaadis), kus iga kogutava tunnuse kohta on eraldi tööleht. Igal
töölehel on ainult üks tulp – kõik sellel andmekogumise perioodil sisestatud antud tunnuse väärtused
sorteeritud kahanevas järjekorras.

51

Kui mõnel perioodil on andmeid sisestatud ja andmekogumise periood on lõppenud, aga vastava raporti
allalaadimise linki pole, siis tähendab see, et kogutud andmeid pole veel jõutud töödelda (sorteerida).
Kui see saab tehtud, tekib ka vastav raporti link tabelisse.

52

Appendix D Sharemind miner host setup

manual

Introduction

This document describes how to set up a working Sharemind miner host on your
server. This process includes installing a Sharemind miner, a proxy application
and web-based front-end for the miner. This document also briefly describes how
to configure the web server and its SSL support.

As all Sharemind applications are unique and have a different data model, we
use the private survey application as an example throughout this document. A
live version of this survey is accessible at http://sharemind.cyber.ee/survey/

promo/index.html.

Setting up Sharemind miner host

Installing and configuring a Sharemind miner

Prerequisites

• Sharemind source code or access to its SVN repository

• development tools (g++, make)

• libraries (refer to docs/src/BUILD-General.dox in Sharemind source code
root folder for a list)

• information about other two miner hosts – their domain names, IP addresses,
administrative and/or technical contact

Install Sharemind miner

1. extract given source code archive:
tar xzf sharemind-release.tar.gz

2. ./configure --prefix=/path/to/install

3. make install

4. if you use firewall, open UDP port for miner:
iptables -A INPUT -p udp -m udp --dport 30003 -j ACCEPT

53

http://sharemind.cyber.ee/survey/promo/index.html
http://sharemind.cyber.ee/survey/promo/index.html

5. generate a key pair for the miner using:
./KeyPairGenerator --private-key minerX-private-key --public-key \

minerX-public-key

6. send your minerX-public-key to two other miner hosts

7. edit your miner configuration file and its whitelist

Set up proxy application

1. edit the database and table names in
contrib/webcontroller/src/WebControllerProxy.cpp

2. run make in contrib/webcontroller

3. copy WebControllerProxy and proxy1.cfg from bin folder to your instal-
lation bin folder

4. generate keys for your proxy application
./KeyPairGenerator --private-key proxyX-private-key --public-key \

proxyX-public-key

5. send the proxyX-public-key to other miner hosts

6. if you use firewall, open UDP port for proxy:
iptables -A INPUT -p udp -m udp --dport 30004 -j ACCEPT

7. edit your proxy configuration file

Setting up a web server

Prerequisites

• Web server with PHP module (running as module or CGI)

• PHP >= 5.2 with mysqli module enabled

• MySQL server and client

• Access to a MySQL database

• URL of the final web-based survey application

• Access to the SVN repository of web front-end scripts or an archive contain-
ing those files

54

Configure SSL support

The web server should support HTTPS (HTTP over SSL) protocol. If you do
not have a CA of your own, then one of the simplest ways to get widely accepted
free SSL certificate is to acquire one from StartSSL [http://www.startssl.com].
StartSSL free ertificates are by default accepted by most modern web browsers.

To be able to authenticate yourself to StartSSL, you should be able to access
either postmaster, hostmaster or webmaster e-mail accounts for the domain you
are trying to get the certificate.

Once you get the certificate, you should install it in your web browser. Foe
example, there is a tutorial on how to do it for Apache: https://www.startssl.
com/?app=21

Miner web front-end

1. extract the miner folder from the provided private-survey archive and go to
that folder:
cd miner

2. ./create-miner-db-script.sh TABLE_NAME > table.sql

3. mysql -u USERNAME -p DATABASE < table.sql

4. cp -R export www /path/to/your/web/folder

5. edit /path/to/your/web/folder/config.php
Change the miner ID 1,2,3 and MySQL connection information. Table name
is the table you just created.

6. edit /path/to/your/web/folder/message_passing.html
Change the row
var parentHost = ’http://localhost’;

to use the real hostname and protocol of the final web-based application.

7. test if random.php in the /path/to/your/web/folder/ is accessible from
the web. It should show something like:
{"miner":1,"random":"4c c4 02 90 99 6e 70 a1 00 25 55 bc 47 74 14

50 5f 46 69 30 53 df 2f a4 5e 27 e9 3c fc 2e c3

f5","success":true,"errno":0,"error":""}

8. if you use suhosin with PHP, then please edit your suhosin.conf (usually
in /etc/php5/conf.d) to allow longer GET parameter values in requests:
suhosin.get.max_value_length = 2048

55

http://www.startssl.com
https://www.startssl.com/?app=21
https://www.startssl.com/?app=21

Appendix E Source code of the JavaScript

controller library

56

	Introduction
	Outline
	Author's contribution

	Preliminaries
	Privacy-preserving data mining
	Sharemind
	Sharemind application's development process

	Joint analysis of financial data
	Problem statement
	The initial solution and its security
	Improved solution

	Application architecture
	Overview
	Miner's web interface
	Miner proxy application
	Miners and data mining algorithms
	Presenting the results

	Web-based controller library
	Introduction
	Connecting to the miners
	Script tag workaround
	HTML5 cross-document messaging API

	Random number generation
	Using the library

	Deployment analysis
	Miner setup
	Data collection
	User story
	Filling in the form
	Sending the data
	Submitting the same form twice

	Reporting
	Training materials

	Project lifecycle
	Timeline
	User problems
	User feedback

	Conclusion
	Juhtumianalüüs: turvalise ühisarvutuse rakendamine jagatud andmete analüüsimisel
	References
	Appendix SecreC source code for sorting data vectors
	Appendix User manual for ITL members
	Appendix User manual for ITL board members
	Appendix Sharemind miner host setup manual
	Appendix Source code of the JavaScript controller library

