
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science
Speciality of Security and Mobile Computing

Tiina Turban

A Secure Multi-Party Computation
Protocol Suite Inspired by Shamir’s Secret

Sharing Scheme

Master’s Thesis (30 ECTS)

Supervisor: Sven Laur, PhD

Supervisor: Stig Frede Mjølsnes, PhD

Instructor: Dan Bogdanov, PhD

Tartu 2014

A Secure Multi-Party Computation Protocol Suite
Inspired by Shamir’s Secret Sharing Scheme
Abstract

The world today is full of secrets. Sometimes, we would like to know something
about them without revealing the secrets themselves. For example, whether I
have more money than my friend or whether two satellites would collide without
publishing their moving trajectories. Secure multi-party computation allows us to
jointly compute some functions while keeping the privacy of our inputs. Sharemind
is a practical framework for performing secure multi-party computations. In this
work, we added a protocol suite to Sharemind. This protocol suite was inspired by
Shamir’s secret sharing scheme, which describes a way to divide a secret into pieces.
We describe algorithms for addition, multiplication, equality-testing and less-than
comparison. We also give correctness and security proofs for the protocols. The
resulting implementations were compared to an existing protocol suite inspired
by additive secret sharing. The initial complexities and benchmarking results are
promising, but there is room for improvement.

Keywords: cryptographic protocols, secret sharing, secure multi-party computa-
tion, implementation, performance

2

Shamiri ühissalastusest inspireeritud turvalise ühis-
arvutuse protokollide komplekt
Lühikokkuvõte

Tänapäeva maailm on täis saladusi. Mõnikord me sooviks teada midagi nende
kohta ilma oma saladusi avalikustamata. Näiteks võib kedagi huvitada, kas ta on
rikkam kui mõni tema sõber. Valitsusi võib huvitada, et nende satelliidid ei satuks
kokkupõrkesse, kuid samas ei tahaks nad välismaailmale oma strateegiliste satel-
liitide liikumise kohta liiga palju infot jagada. Turvaline ühisarvutus võimaldab
osapooltel ühiselt arvutada mingi funktsiooni väärtusi ilma sisendeid avalikusta-
mata. Sharemind on üks praktiline raamistik turvaliste ühisarvutuste tegemiseks.
Selles töös loomegi protokollide komplekti Sharemindi jaoks. Meie protokollid on
inspireeritud Shamiri ühissalastusest, mis võimaldab saladusi osadeks jagada. Me
anname algoritmid liitmise, korrutamise ja võrdlustehete jaoks koos vastavate tur-
vatõestustega. Lisaks võrdleme realiseeritud protokollide jõudlust juba varasemalt
olemasoleva protokollistikuga. Esialgsed keerukus- ja jõudlustulemused on lubavad,
kuid on arenguruumi.

Võtmesõnad: krüptograafilised protokollid, ühissalastus, turvaline ühisarvutus,
teostus, jõudlus

3

Contents
1 Introduction 7

1.1 Motivation . 7
1.2 Contribution of the author . 7
1.3 Outline . 8

2 Preliminaries 9
2.1 Secret sharing . 9
2.2 Secure multi-party computation based on secret sharing 12
2.3 Sharemind . 13

2.3.1 The Sharemind secure computing framework 13
2.3.2 Protection domain deployment configuration 15
2.3.3 SecreC 2 . 15

2.4 Other SMC frameworks . 16

3 A protection domain kind based on Shamir’s secret sharing 20
3.1 Protection domain setup . 20
3.2 Data types supported by the protection domain kind 20

3.2.1 Unsigned integers . 20
3.2.2 Implementing calculations modulo p 21
3.2.3 Signed integers . 22
3.2.4 Booleans . 24

3.3 Security model . 24

4 Basic protocols 27
4.1 Classification . 27
4.2 Resharing . 28
4.3 Declassification . 30

5 Arithmetic protocols 32
5.1 Addition and subtraction with a public value 32
5.2 Multiplication with a public value 33
5.3 Addition and subtraction for two shared values 33
5.4 Multiplication of two shared values 34
5.5 Boolean arithmetic . 36

6 Comparison operations 38
6.1 Sub-protocols . 39

6.1.1 Secret-sharing a random value 39
6.1.2 Sharing a random bit . 40
6.1.3 Conjunction of bits . 42

4

6.1.4 Prefix-AND . 43
6.1.5 Less-than for bitwise secret-shared values 44
6.1.6 Bit composition . 46
6.1.7 Bit decomposition . 46
6.1.8 Bitwise sharing of a random number 47
6.1.9 Least significant bit . 48
6.1.10 Comparison to half prime for unsigned integers 50

6.2 Equality . 50
6.2.1 Equality with a public result 51
6.2.2 Equality with bit decomposition 52
6.2.3 Equality without bit decomposition 53

6.3 Less-than . 55
6.3.1 Less-than with bit decomposition 55
6.3.2 Less than without bit decomposition 55

7 Comparison of protection domains 59
7.1 Complexity . 59
7.2 Practical performance . 61

8 Conclusion 63

5

List of Symbols
n number of computing parties.

k threshold in Shamir’s secret sharing scheme.

F finite field we are working in.

p prime indicating the finite field Zp we are working in.

JaK secret-shared value a.

JaKi share of secret-shared a, that party CP i sees publicly.

a vector of booleans containing bits of a.

JaK vector of secret-shared values (containing secret-shared bits of a).

ai i-th bit of a.

JaiK secret-shared i-th value from the vector a (secret-shared bit i of a).

` length in bits for current datatype in algorithms.

b length in bits for current datatype in complexity analysis.

6

1 Introduction

1.1 Motivation

In today’s world, we have a huge amount of information. That data could be used
to figure out trends which could, for example, allow us to make wiser business
decisions. If we would live in a world without secrets and where everyone trusts
each other, then we could simply publish all the information and analyse it. In the
real world, however, there are many things, that people consider private, such as
their medical or financial details. Companies have business secrets, which they do
not want to reveal either. Therefore, it would be great, if there would be a way to
analyse data without compromising anyone’s privacy. The latter is exactly what
secure multi-party computation (SMC) allows us to do.

One of the frameworks that can be used in practice for secure multi-party
computation is Sharemind [Bog13]. There are different cryptographic primitives,
that secure multi-party computation can rely on, such as homomorphic encryption,
additive or Shamir’s secret sharing. So far, all the protocol suites implemented on
Sharemind fix the number of participants in the computation. Also, if any of the
participants would disappear, then we cannot access the results. Protocols using
Shamir’s secret-sharing, which have not been implemented on Sharemind so far,
would provide more flexibility. In theory we could allow more corrupted parties.

Most of the research that exists about SMC using Shamir’s scheme only focuses
on unsigned integers, especially when dealing with equality testing or comparison
operators. We on the other hand are interested in a more universal framework,
that allows protocols to be used on both unsigned and signed integers as well as
boolean data types.

1.2 Contribution of the author

The goal of this work is to create a new protocol suite for Sharemind and compare
it to the existing additive three-party protocols. The implementation shall use
Shamir’s secret sharing scheme. The implemented protocol suite consists of classi-
fication, declassification, resharing, addition, subtraction, multiplication, equality
testing and less-than comparison with the necessary sub-protocols. There were
various alternatives to be considered for each algorithm. The author developed an
experimental implementation on Sharemind. In addition, the author wrote down
the algorithms with correctness and security proofs. Finally, the author bench-
marked the performance between the new and an existing comparable protocol
suite.

7

1.3 Outline

The List of Symbols on page 6 defines the notation used in this thesis. Section 2
gives an overview of the background information. This includes explaining secret-
sharing and, more in depth, the Shamir’s secret sharing scheme. We describe
what secure multi-party computation is and how Sharemind works. There is also
a subsection that talks about other SMC frameworks.

Section 3 focuses on the details of implementing a protocol suite on Sharemind.
This section shows how to use the result of this work. We also describe how our
different data types are represented and the concepts used in proofs.

Section 4 shows how our private information can be taken into pieces and
divided among computing parties. The declassification subsection, on the other
hand, shows how the computed result, that is still in secret-shared form, can be
reconstructed to publish the value.

The arithmetic protocols are given in Section 5 and algorithms for comparison
operations in Section 6. The latter includes various sub-protocols, such as least
significant bit, that were needed for equality testing or less-than comparison.

Section 7 sums up the complexities and brings out the benchmarking results
with comparison to the additive three-party protocol suite. The final Section
concludes this thesis and provides ideas for further work.

8

2 Preliminaries

2.1 Secret sharing

Secret sharing [Sha79, Bla79] is a technique for protecting confidential data. The
secret is divided into parts — shares. These shares will then be distributed among
a number of parties. In order to reconstruct the secret, a certain predefined set of
shares must be combined. For example, unique shares are divided to n participants,
but any k of them together can retrieve the original secret. This structure is also
known as k-out-of-n threshold scheme. Gaining access to less than that threshold
k of distinct shares shall give no information about the secret.

Definition 1. Let s be a secret value and JsK1, JsK2, ..., JsKn shares. We have a
k-out-of-n secret sharing scheme, if the following conditions hold [Sha79]:

Correctness: knowledge of any k or more shares of s makes the secret easily
computable;

Privacy: knowledge of any k − 1 or fewer shares of s leaves the secret com-
pletely undetermined (in the sense that all its possible values are equally likely).

Additive secret sharing scheme is a form of secret sharing. It is a scheme,
where one needs to know all the shares to discover the original value, i.e. an n-out-
of-n threshold scheme. The algorithm divides shares by first uniformly choosing
n− 1 values JsK1, JsK1, ..., JsKn−1 and then calculating JsKn = s− JsK1− ...− JsKn−1.
The secret s can be reconstructed by adding all the shares together s = JsK1 +
...+ JsKn, but knowing n− 1 or less shares gives a malicious entity (adversary) no
information about s.

Shamir’s secret sharing scheme [Sha79] is a form of secret sharing, which uses
the idea that k points are needed to uniquely define a polynomial of degree k− 1.
With this scheme, a threshold k can be chosen, which defines the number of shares
needed for reconstructing the secret, i.e. it is a k-out-of-n scheme.

Shares in Shamir’s secret sharing scheme have two values - an index and the
evaluation of the randomly generated polynomial on that index – (i, f(i)). The
indices have to be unique to each party and we cannot use zero as that would
reveal the secret f(0) = s. To create the shares, we choose n random points on the
polynomial (x, f(x)). These points we then distribute to the parties. Coefficients
will be chosen randomly and the free member is equal to the secret. To illustrate
how it works, we can look at Figure 1. In reality, Shamir’s scheme uses polynomials
over a finite field and not a two dimensional plane. In this example, we use a 2-out-
of-4 threshold scheme, where JsK1, ..., JsK4 represent the shares for a secret value

9

s. The constant c1 is random and hence f(x) = s + c1x is a random 1-degree
polynomial.

x

f(x)

f(x) = s+ c1x

f(0) = s

1

JsK1

2

JsK2

3

JsK3

4

JsK4

Figure 1: Classifying a secret value with Shamir’s secret sharing scheme

Figure 2 illustrates the situation, where we know less than k shares. If we know
only one point for a 1-degree polynomial, we can draw an infinite number of lines
covering all the possible values (s, s′, s′′, ... on Figure 2) and there is no way to
know which one is the right one.

x

f(x)

f(x) = s+ c1x

f(0) = s

2

JsK2s′

s′′

s′′′

Figure 2: A failed attempt to reconstruct a secret knowing k − 1 shares.

10

x

f(x)

f(x) = s+ c1x

f(0) = s

2

JsK2

3

JsK3

Figure 3: Reconstructing the secret with Shamir’s secret sharing scheme

However, if we know at least k shares, it is possible to reconstruct the originally
created polynomial f(x). Figure 3 illustrates, that there is only one straight line,
we can draw through two points on a two dimensional plane. We can use Lagrange
interpolation [WR67]. Let t1, ..., tk be the indices for any unique k shares (ti, f(ti)).
According to the Lagrange interpolation formula, we can evaluate a polynomial at
any given value by calculating

f(x) =
k∑

i=1

f(ti)bi(x),

where bi(x) is the Lagrange basis function

bi(x) =
k∏

j=1
i 6=j

x− tj
ti − tj

.

To find the secret we are only interested in the value of the polynomial in position
zero, i.e. f(0). Let bi denote the Lagrange basis function bi(0). Then,

bi = bi(0) =
k∏

j=1
i 6=j

0− tj
ti − tj

=
k∏

j=1
i 6=j

−tj
ti − tj

. (1)

Hence, the secret can be found with

s = f(0) =
k∑

i=1

f(ti)bi. (2)

11

Note that the Lagrange basis function does not depend on the polynomial, which
means that bi’s can be pre-calculated.

Alternatives. Homomorphic encryption [Gen09] can be used instead of secret
sharing, however the latter has been shown to be less efficient in practice [KBdH09].
Another alternative is Yao’s garbled circuit construction [Yao86].

2.2 Secure multi-party computation based on secret sharing

With secret sharing we can protect our data, but often we would still like to process
the protected data without compromising privacy. That is exactly what secure
multi-party computation allows us to do – compute various functions without
giving away any information about their own shares. Some real-life use cases
include benchmarking, where several companies want to compare themselves to
each other [BTW12], various forms of auctions and private biddings [BCD+09].

Secure Multy-Party Computation (SMC) was initially introduced in 1982 by
Yao [Yao82]. In his paper, Yao brings the example of two millionaires wanting to
know who is richer without revealing their wealth. More generally, we have any
number of input parties IP1, IP2, ..., IPm, computing parties CP1, CP2, ..., CPn

and result parties RP1, RP2, ..., RPr. The computing parties wish to compute
f(JxK1, JxK2, ...JxKn) = (JyK1, JyK2, ...JyKn). Initially, each party CP i knows JxKi,
but no other JxKj, i 6= j. After jointly computing the function f , each party learns
their output JyKi and nothing else. Some, or all of the output values can be equal.
For example, in the millionaires’ problem, we wish to compute

f(JxK1, JxK2) =
{

1 if JxK1 < JxK2,
0 otherwise

where both parties get the same result (JyK1 = JyK2).
There are different security requirements that may be needed for different ap-

plications. Cheating in the context of secret sharing and secure multi-party com-
putation can be seen as having an adversary, who may corrupt some subset of
computing parties [CD05]. Corruption can either be passive or active. In the first
case the adversary can see all the data the corrupted parties have. Active adver-
sary can, in addition to seeing everything, also manipulate the messages sent or
even stop sending anything altogether. Adversaries may additionally be divided
into static and adaptive. If there is a constant set of corrupted players over the
course of running the protocol then we are dealing with a static adversary. Adap-
tive adversaries, on the other hand, can choose at any point in time to corrupt
a different set of players. In this thesis, we are considering protocols with static,
passive adversaries. This is also known as the honest-but-curious security model.

12

We can have at most k − 1 corrupt parties, otherwise the adversary has enough
shares to reconstruct the secret.

2.3 Sharemind

2.3.1 The Sharemind secure computing framework

Sharemind is a framework for building data processing applications that use se-
cure multi-party computation. It is designed with the intention to be efficient
enough for practical applications, but at the same time to be usable by non-
cryptographers [BLW08, Bog13]. The practical part of this thesis is implemented
on the Sharemind SMC framework and more specifically on version 3 of Sharemind.

Input
parties

Computing parties

Result
parties

s1

r
s2

a share of s1
a share of s2
a share of r

classification of s1
classification of s2
declassification of r
secure multi-party

computation

Figure 4: Sharemind 3 deployment model

An example system setting is illustrated on Figure 4. There are three different
kinds of parties: input parties (IP), computing parties (CP) and result parties
(RP). Participants are not restricted to belonging to only one of these groups,
but can also be all of the above or just an input party, who wants to learn results.
There can be any number of input and result parties, but the number of com-
puting parties might be restricted by the protocols used. IPs use secret sharing

13

or other techniques to distribute their confidential data between the CPs. RPs
make queries and initiate computations, that are performed by CPs on the shared
data. In the end, RPs get the public computation results without anyone seeing
the original confidential data.

We could, for example, run 2-out-of-4 Shamir’s secret sharing scheme on Share-
mind 3. Figure 4 shows an IP classifying a secret s1 by giving each CP one share.
Another IP can secret-share another secret s2. Via secure multi-party computa-
tion we can then calculate s1 < s2, where each CP has only one share of the result.
To reconstruct the secret-shared result r, at least two CPs must send their shares
to the RP (because we were using 2-out-of-4 scheme).

Computing parties perform computations by executing algorithms, which con-
sist of addition, multiplication or other operations. These operations are evaluated
by running protocols, that are described using some cryptographic primitives. A
Protection Domain Kind (PDK) defines a set of data representations for storing
and protocols for computing on protected data [BLR13]. A PDK can be designed
for any secure computation techniques with different security guarantees and differ-
ent PDKs can support different operations. Each PDK can have several Protection
Domains (PD), which are concrete initialisations of a PDK. For example, in this
work we will create a PDK that uses the k-out-of-n Shamir’s secret sharing scheme.
For that PDK, we can define a PD with concrete n and k values, e.g. a 2-out-of-4
scheme. The first PDK that was designed for Sharemind uses additive secret shar-
ing with three CPs and it is secure in the semi-honest model [BLW08, Bog13]. In
2013, another PDK using additive secret sharing was described for two computing
parties that offers security against active adversaries [Pul13]. Another example of
a PD is fully homomorphic encryption scheme with addition and multiplication
protocols, and a pair of keys. We can have another PD of the same PDK that
differs only in protection keys, i.e. its configuration.

Sharemind has been used for various practical applications. A recent exam-
ple demonstrates, how secure multi-party computation can be used for calculating
the probability of a collision between two satellites [KW13]. Countries do not
want to reveal exact information about their satellites nor do they want to lose
them. But a collision in 2009 demonstrates, that knowing only approximate data
about the orbits is not enough. It was shown, that SMC can be used as a pos-
sible solution. Another example comes from Estonian Association of Information
Technology and Telecommunications, who wished to calculate benchmarking re-
sults based on their economic indicators [Tal11, BTW12]. Their initial solution
had some security-related shortcomings and a new solution with stronger privacy
guarantees using Sharemind was proposed. This was the first time where SMC
computation on real data was done over the internet with geographically apart
computing nodes. The bioinformatics field offers a third example, where secure

14

multi-party computation could be used to protect the privacy of individuals par-
ticipating in a study [KBLV13].

2.3.2 Protection domain deployment configuration

To make the deployment easily configurable, we have separate files, that define
parameters for each protection domain and each computing party [AS11]. They
contain addresses and encryption keys of other CPs. The configuration files can
also have constants, such as fragment size for controlling parallelism. These con-
stants can then be used in the protocols described in that protection domain
kind. There can be any number of computing parties, of which some can be non-
computing nodes for certain PDs. The deployment configuration is not limited to
having only one protection domain, but we can describe and use PDs in parallel.
For example, see Table 1, where we have three protection domains defined on our
four CPs. Computing nodes are denoted with a star (*) in the table.

Protection domain CP1 CP2 CP3 CP4

Additive 3-party * * *
FHE *
Shamir 2-out-of-4 * * * *

Table 1: Multiple protection domains deployment configuration

2.3.3 SecreC 2

SecreC [Jag10] is a privacy-aware programming language inspired by C. Its second
version SecreC 2 [BLR13] is used in the Sharemind 3 SMC framework. It is used
to describe algorithms that run on CPs to calculate results for RPs. The language
is designed to be easy to use and the programmer can just call the PDK protocols
and operations as predefined functions, i.e. he/she does not need to understand
the underlying cryptographic primitives. To make the developers life easier, there
is an integrated development environment for the SecreC programming language
(SecreCIDE) [Reb10].

SecreC 2 is strongly typed, where the type has a data type and a PD. There
is a predefined PD for public types and it can be omitted when defining public
variables, i.e. int x; would define a public integer. It is a polymorphic language
that allows to write code not specific to a certain PDK. Obviously, that PDK must
define the protocols used in the code. Being domain-polymorphic allows for an easy
integration of new PDs or re-usage of code for different deployment scenarios or
common functionality. The latter is also the reason, why it makes sense to have
a standard library for SecreC 2. The standard library includes functions, such as

15

minimum, maximum and absolute value. Additionally, if for a specific PDK, there
is a more efficient version, it is possible to implement a special version aside the
general function.
import addi t ive3pp ;
import shamirnpp ;
domain a3pp addi t ive3pp ;
domain s2o f4 shamirnpp ;

template <domain D, type T>
D T abs (D T x) {

return x < 0 ? - x : x ;
}

void main {
a3pp uint x = 5 ;
a3pp uint ax = abs (x) ;
assert (declassi fy (ax) == (5 : : uint)) ;

s 2o f 4 int y = - 5 ;
s2o f4 int ay = abs (y) ;
assert (declassi fy (ax) == (5 : : int)) ;

}

Listing 1: SecreC 2 example – Absolute value

In order to use protection domains in SecreC 2, we need to define them. We
have additive secret sharing for three parties against passive adversary imple-
mented for Sharemind, so the module additive3pp can simply be defined or im-
ported. The latter provides us additionally the possibility to use additive3pp’s
standard library. After which we can define a protection domain a3pp that can be
used in a domain-polymorphic function. Listing 1 gives an example of SecreC 2
code with two PDs. The PDK shamirnpp will be created with this thesis and PD
s2of4 can be defined for it. The function abs can be used with any domain and
any type as long as there is less-than and additive inverse defined on D T types.
The main function calls abs on both PDs on different types and then checks that
the value was as expected.

2.4 Other SMC frameworks

Even though the theory of secure computations has been around since the eight-
ies [Yao82], the first practical implementations were introduced after the mil-
lennium. Several frameworks, such as Fairplay [MNPS04], SEPIA [BSMD10],
VIFF [Gei10], TASTY [HKS+10], VMCrypt [Mal11], MEVAL [CMF+14] and

16

PICCO [ZSB13] have been developed since.

Fairplay1 was the first practical implementation of SMC and it was introduced
in 2004. The initial version used Yao’s garbled circuits [Yao86] and supported
secure communication between two parties. In 2006 Ben-David, Nisan and Pinkas
created an extension of the system called FairplayMP, for Fairplay Multi-Party.
This version uses Yao circuits and (bn

2
c+1)-out-of-n secret sharing. They have their

own high-level programming language called Secure Function Definition Language
(SFDL), in which users can write code, that will then be compiled into a low-level
representation as a Boolean circuit. To run secure multi-party computation, users
must also write a configuration file with IP addresses and other settings.

FairplayMP is implemented in Java, focusing on performance in terms of mes-
sage sizes and the number of communication rounds. To check whether the system
could be used for real life problems, the authors experimented with protocols for
voting and computing auctions. More specifically, they ran a second-price auc-
tion [Vic61] (winner pays the amount of second-highest bid) between bidders,
where everyone learns the second-highest bid, but only the seller learns the iden-
tity of the winner. In total, there were five computing parties, for each a computer
with two Intel Xeon 3 GHz CPU processors and 4 GB of RAM was used. Running
the experiment for 8-bit bids took about 8 seconds [BDNP08].

VIFF2 was originally developed in the Secure Computing Economy and Trust
(SCET) and the Secure Information Management And Processing (SIMAP)3
projects [BDJ+06]. The technology developed during those projects was deployed
to run the first large-scale SMC in 2008 [BCD+09]. The practical experiment
was ran with Danish farmers trading sugar beet contracts using a secure double
auction. The Virtual Ideal Functionality Framework (VIFF) is implemented in
Python and is Free Software, licensed under the GNU LGPL4. It uses Shamir and
pseudo-random secret sharing [CDI05]. Various protocols have been implemented
of VIFF. In addition to passive, it is also possible to write protocols that are secure
against active and adaptive adversaries. For example, they implemented multipli-
cation that is secure against malicious adversary and, for 7 computing parties, it
took 2.7 seconds to prepare 1000 multiplications, but only 2 seconds to execute all
of them [Gei10].

SEPIA5, which is short for Security through Private Information Aggregation is
1Fairplay – http://www.cs.huji.ac.il/project/Fairplay/
2VIFF – http://viff.dk
3SIMAP Project – http://www.alexandra.dk/uk/projects/pages/simap.aspx
4GNU LGPL – https://www.gnu.org/licenses/lgpl.html
5SEPIA – http://sepia.ee.ethz.ch

17

http://www.cs.huji.ac.il/project/Fairplay/
http://viff.dk
http://www.alexandra.dk/uk/projects/pages/simap.aspx
https://www.gnu.org/licenses/lgpl.html
http://sepia.ee.ethz.ch

a Java library for SMC. It is also Free Software, licensed under the GNU LGPL.
SEPIA uses Shamir’s secret sharing and, similarly to Sharemind’s additive3pp
protection domain, it is secure against static passive adversaries. In 2010, SEPIA
outperformed VIFF and FairplayMP for running multiplication and comparison
operations in parallel. Compared with Sharemind version 2 however, performance
was similar [BSMD10].

TASTY6 is a Tool for Automating Secure Two-partY computations. This tool
uses homomorphic encryption or garbled circuits or their combinations to auto-
matically generate efficient protocols from their high-level description. They have
their own specification language called TASTY input language (TASTYL), which
is based on Python, as TASTY itself is implemented in Python. TASTY’s Run-
time Environment also provides the possibility to automatically analyse, run, test,
and benchmark the two-party secure function evaluation protocol. Comparing
the performance to original Fairplay, which also uses Yao’s garbled circuits con-
struction, TASTY requires less memory, communication and online time, though
the setup time is slower. Henecka, Kögl, Sadeghi, Schneider, and Wehrenberg
assume that this is due to their implementation language choices (Python versus
Java) [HKS+10].

VMCrypt is a software library created with a goal to be modular and scalable. It
is implemented in Java and uses Yao’s garbled circuits. They noticed that in order
to make the system scalable, they need to look at memory consumption, as holding
large circuits in memory would take too much RAM. Hence, VMCrypt takes a
streaming approach to generating circuits. It streams the circuit gate by gate,
i.e. when a part of the circuit is ready, it will be passed to the evaluator and the
computation process can already begin. This allowed Malka to run performance
tests on circuits with hundreds of millions of gates [Mal11].

PICCO [ZSB13] is a general-purpose compiler for private distributed computa-
tion. Input for the compiler is a program, written in a C language extension, that
provides a way to annotate private data. The output will be its secure distributed
implementation in C. The resulting code can then be compiled with a native C
compiler and executed by a number of computation nodes. Zhang, Steele and
Blanton also concentrated on performance and making the secure computation
scalable. To do that, they implemented multiple types of parallelism, e.g. over
loops and arrays. Internally, PICCO uses Shamir’s secret sharing.

MEVAL [CMF+14], which is short for Multi-party EVALuator is a SMC system.
6TASTY – https://code.google.com/p/tastyproject/

18

https://code.google.com/p/tastyproject/

It uses Shamir’s secret sharing scheme and provides security against passive adver-
saries. For better performance, they use asynchronous processing and a Mersenne
prime field to get optimised field operations. At the Applied Multi-Party Compu-
tation workshop at Microsoft Research, Hamada gave the following performance
results in his presentation [Ham14]. 8.7 multiplications of 61-bit integers can be
done per second and sorting 1 million 20-bit items takes 6.9 seconds. MEVAL uses
R7 with an add-on as a front-end client application.

7R - http://www.r-project.org

19

3 A protection domain kind based on
Shamir’s secret sharing

3.1 Protection domain setup

The goal of this work is to provide a way to use Shamir’s secret sharing on Share-
mind. We will create a new protection domain kind shamirnpp, that can be used
with various number of CPs. Previously, the PDKs have defined the number of
computing parties, e.g. additive3pp has three CPs. The protection domain spec-
ifies n and k values, for k-out-of-n Shamir’s secret sharing scheme. The threshold
is needed for the classification protocol, as we need to know what degree random
polynomial to create. To achieve that our PD configuration files also contain the
constant k, that is used in the PDK protocols.

3.2 Data types supported by the protection domain kind

3.2.1 Unsigned integers

We have different unsigned types, such as uint8, uint16, uint32 and uint64. We
could only have one type, but there are trade-offs here – it is cheaper for network
communication and memory to calculate using uint8, but 256 values is often not
enough.

Shamir’s secret sharing is done on a field, so we shall work in a finite field. That
means there should be prime number possible values. Our default data types in
the computer for integers however have powers of two values.

To make life easier we just use the largest prime value in the finite field, that
fits in n bits as the maximum value, that an n-bit integer type can have. Table 2
shows, for each unsigned type, its size (the number of values a certain type can
hold), the largest prime, i.e. how many values our type will be able to hold and
the last column contains the number of lost values. If one goes over the maximum
value then overflow happens, e.g. 200 + 55 = 5.

Type sizeof(uintX) largest prime (p) difference (d)
uint8 256 251 5
uint16 65536 65521 15
uint32 4294967296 4294967291 5
uint64 18446744073709551616 18446744073709551557 59

Table 2: Unsigned integers for Shamir secret sharing on Sharemind

We know that our uintX is not a real X-bit unsigned integer, but our goal is to

20

achieve comparability with other PDKs. Aside from the fact, that last few values
cannot be used, it does not influence the developer’s life.

3.2.2 Implementing calculations modulo p

In order to more comfortably do operations in our finite field, i.e. modulo a prime
p, we created our own types. Internally they still use default types supported by
the processor and have 2n values, which means that in case of an overflow, the
result would be wrong. There are multiple solutions available here, for example

1. performing the operations in a bigger type and using modulo p in the end,

2. making corrections, i.e. adding or subtracting the difference from the result
when needed.

Upcasting the type and performing operations there might not be so efficient
if we run out of bigger default types, for example for uint64.

Addition is done by making corrections, see Algorithm 1. The result of addition
can end up in three different regions: [0, p), [p, 2n) or [2n, 2p − 2). The last one
result in an overflow in the native type and we need to add d to correct it for our
uintX. The middle region, on the other hand, should have been overflown.

Algorithm 1: Implementing addition in Zp on native types
Input: Prime p, values a, b ∈ Zp, difference d
Result: c ∈ Zp

1 c = a+ b
2 if c < a then
3 c = c+ d
4 else if c ≥ p then
5 c = c− p

Subtraction is done by making corrections, see Algorithm 2. The result of sub-
traction can end up in two different regions: (−p, 0) or [0, p). In the first case, we
subtract d to correct the overflow.

Multiplication is simply done by converting to a larger type and applying the
modulus after multiplication.

Multiplicative inverse is found using the Extended Euclidean algorithm.

21

Algorithm 2: Implementing subtraction in Zp on native types
Input: Prime p, values a, b ∈ Zp, difference d
Result: c ∈ Zp

1 c = a− b
2 if c > a then
3 c = c− d

3.2.3 Signed integers

When thinking about signed integers for secret sharing, we can look at a some-
what similar problem of how negative numbers are represented in computer hard-
ware. There are four best-known methods: sign and magnitude notation, one’s
complement, two’s complement and excess-K representation. Even though two’s
complement is most widely used, there are advantages and disadvantages to each
representation [Flo63]. In this section, we will be considering three different ideas
for signed integers notation, each having its own benefits and drawbacks.

Sign and magnitude. When keeping the sign separately from magnitude we
can use the first bit, but we can also just use a separate boolean value, which
might make things easier later. For example, we do not need to extract the most
significant bit which, in secret sharing, is not that trivial and can use the separate
boolean value instead. This representation makes it easy to perform multiplication,
but for addition and subtraction, getting the sign right is not so trivial.

Modified two’s complement. Another idea is to split the value range into
positive and negative parts. We got the idea from two’s complement notation
for signed integers in hardware. Since we do not use the full range of values in
unsigned integers, e.g. uint8 maximum value is 250 (111110102), we need to
modify the notation by adding or subtracting the difference d. Otherwise, we
do not have small negative numbers as they would result in an overflow, e.g.
−1 = 111111112 = 000001012 = 5. Hence, to convert the negative signed integer
i to the internal unsigned representation u we find the two’s complement and
subtract d. Vice versa, i.e. from u to i, we add d to the negative value found by
taking the two’s complement of u.

Table 3 shows the mapping between unsigned and signed integers. Additionally,
the corresponding values and the bitwise representation are given for 8-bit integer
types (p = 251).

22

unsigned signed uint8 int8 Binary(uint8/int8)
0 0 0 0 00000000
1 1 1 1 00000001
...
bp
2
c − 1 bp

2
c − 1 124 124 01111100

bp
2
c bp

2
c 125 125 01111101

bp
2
c+ 1 bp

2
c+ 1 126 126 01111110

...
bp
2
c+ bd

2
c bp

2
c+ bd

2
c 127 127 01111111

bp
2
c+ bd

2
c+ 1 bd

2
c − bp

2
c 128 -123 10000000

bp
2
c+ bd

2
c+ 2 1 + bd

2
c − bp

2
c 129 -122 10000001

...
p− 2 −2 249 -2 11111001
p− 1 −1 250 -1 11111010

Table 3: Signed integers based on the most significant bit

Centered around zero. The third idea also splits the value range into positive
and negative parts. Algesheimer, Camenish and Shoup [ACS02] described how it
can be done by keeping the values centered around zero. Hence, to convert the
signed integer i to the internal unsigned representation, we simply add p, if i < 0.
Getting the signed value back would mean subtracting p from u ∈ Zp if u > bp

2
c.

Notice that we cannot only look at the most significant bit to determine if the
value is negative, since our unsigned types do not use all the values compared to
the native types in computer, see Section 3.2.1. This might make it difficult to
use bits in various algorithms. However, we can use the comparison a < bp

2
c to

determine if a contains a negative value as an alternative to looking up the most
significant bit in two’s complement.

Table 4 shows the mapping between unsigned and signed integers. Additionally,
the corresponding values and the bitwise representation are given for 8-bit integer
types (p = 251).

Conclusion. The sign and magnitude separation makes it easy to understand
what value is represented, but this does not overcome the increased complexity
for addition and subtraction. Hence, the choice is left between our modified two’s
complement or centering around zero. For both options, the basic arithmetic
protocols simply work on the underlying unsigned representations. When we think
about comparison operators, and more specifically the less than operation, initially
it seems, that we need to perform bitwise operations. In that case, having the most
significant bit denote the sign becomes useful. But as it turns out, there is a more

23

unsigned signed uint8 int8 Binary (uint8/int8)
0 0 0 0 00000000
1 1 1 1 00000001
...
bp
2
c − 1 bp

2
c − 1 124 124 01111100

bp
2
c bp

2
c 125 125 01111101

bp
2
c+ 1 −bp

2
c 126 -125 01111110

bp
2
c+ 2 1− bp

2
c 127 -124 01111111

bp
2
c+ 3 2− bp

2
c 128 -123 10000000

...
p− 2 −2 249 -2 11111001
p− 1 −1 250 -1 11111010

Table 4: Signed integers centered around zero

efficient way to compute less-thans using a comparison to half of the prime (see
Section 6.3). This makes centering around zero a better choice for the protocols
implemented in this work.

3.2.4 Booleans

It is tempting to use a finite field Z2 to represent booleans. However, this would
restrict us to only having two unique shares. For example, for k = 2, n = 3
we would create a polynomial f(x) = s + cx (see Section 4.1 for information
on how values are classified). Now being in Z2 would mean that p = 2 and
f(x) = s+ cx mod 2. Hence the odd number shares are equal

f(1) = s+ c

f(2k + 1) = s+ (2k + 1)c = s+ c mod 2.

Then, in our example 2-out-of-3 scheme, we cannot reconstruct the secret having
CP1 and CP3 (see Section 2.1 for information about declassification with Shamir’s
secret sharing scheme). What is even worse, the even number shares reveal the
secret s.

f(2) = s+ 2c = s mod 2

Our solution is to just use 8-bit unsigned integers to represent booleans, having
s ∈ {0, 1}.

3.3 Security model

To prove the security of our protocols we will use the security proof framework
described for additive3pp [Bog13]. We have the real world (see Figure 5), where

24

honest party corrupted party

Figure 5: Sharemind in the real world setting

honest party corrupted partytrusted third party

Figure 6: Sharemind in the ideal world setting

CPs exchange messages between each other to calculate some function f . We
define an ideal world (see Figure 6), where there is a trusted third party, that

25

simulatorhonest party corrupted partytrusted third party

Figure 7: Perfect simulation

collects the inputs and calculates f . To prove security, we show, that any real
world attack also exists in the ideal world. We do that using perfect simulatabil-
ity, which ensures that the adversary cannot distinguish between its views of the
protocol in the real and the ideal world. Perfect simulatability guarantees that
the adversary does not learn anything except what can be derived from corrupted
parties’ inputs and outputs. To do that, we construct a simulator (see Figure 7),
that can simulate our protocol in the real and ideal world indistinguishably. The
simulator cannot rewind the algorithm to an earlier state. Notice that this is not
the standard definition used in cryptographic proofs for simulatability. A proto-
col, that consists only of perfectly simulatable sub-protocols and has their outputs
used only either as inputs to another sub-protocol or outputs of the main protocol,
is itself perfectly simulatable [Bog13, Theorem 4]. But if we re-use the output of
a perfectly simulatable protocol it may leak information. More precisely, if out-
put shares depend on input shares, then we cannot achieve better security than
perfect simulatability. If they are independant, then we have universal compos-
ability. The latter can be achieved by resharing (see Section 4.2) in the end of
a perfectly simulatable protocol. In 2014, a more detailed version of the security
model was published [BLLP14]. In this thesis, we present security proofs in the
model of [Bog13]. This means, that we show, that the protocols are correct and
either perfectly simulatable or universally composable.

26

4 Basic protocols
In this and the following sections, we shall use F = Zp to denote the finite field
we are operating on. The letter b shall represent the bit-length of p, i.e. the bit-
length of value s ∈ F . In the following algorithms, a share of JsK for CP t is denoted
as JsKt. When analysing the complexities of our protocols, we notice that some
things can be pre-computed and others depend on the inputs. Therefore, we shall
separate the offline and online phase. In both phases, we are mainly interested
in two things – the number of times a CP needs to wait for input (rounds) and
bits of data transferred (communication cost). Generally, we prioritise minimising
rounds over communication costs [Reb12].

4.1 Classification

As mentioned previously, shares in Shamir’s secret sharing scheme consist of two
values – input to the polynomial and the corresponding output. We have decided
to use the CP ’s node number t as the first part of the share and then calculate
f(t). This way, we do not need to use network resources to communicate them.
More-over, the numbers are guaranteed to be unique per protection domain and
there is no node number zero. To classify the secret value s, we must first create a
random polynomial with degree k− 1, where the free term is the secret value, e.g.
k = 3, f(x) = s + 12x − 43x2. Algorithm 3 is given for an input party wanting
to classify a secret value, but any CP t (computing party with node number t) can
classify a value by sending f(x) to all other CPs and keeping f(t) as their own
share. This is also the case when a participant is an IP and a CP at the same
time.

Algorithm 3: Protocol for classifying a secret value Classify(s)
Input: Finite field F , threshold k, IP has an unsigned integer secret s ∈ F
Result: All CPs have a share of JsK.

1 IP uniformly chooses c1, . . . , ck−1
u← F

2 IP constructs the polynomial f(x) = s+ c1x+ c2x
2 + · · ·+ ck−1x

k−1

3 IP sends f(x) to CPx

4 Each CPx receives f(x)

For boolean values, the same algorithm is used, we just know that s ∈ {0, 1}.
For signed integers, the secret s is first converted to an unsigned integer u and then
classification protocol is run on u. For centering around zero representation, the
conversion can be done by adding p to negative inputs. Because then, assuming

27

correct input range, the positive values are in {0, ..., bp
2
c} and negative values are

in {−bp
2
c+p, ...,−1+p} = {−p−1

2
+p, ..., p−1} = {dp

2
e, ..., p−1}, see Algorithm 4.

Algorithm 4: Protocol for classifying a signed integer
Input: Prime p, IP has a signed integer secret s ∈ {−bp

2
c, ..., bp

2
c}

Result: All CPs have a share of JsK.

1 IP calculates:
2 if s ≥ 0 then
3 u = s
4 else
5 u = s+ p

6 IP runs Classify(u)

If the input party does not spread the polynomial constants and we assume
that there is a secure connection from IP to each CP , then the protocol is secure.
Complexity for both unsigned or signed integers requires one round and communi-
cation of one unsigned integer to each CP , i.e. nb bits of information. Remember
that, for booleans, b = 8.

4.2 Resharing

The simplest way for refreshing a secret is by adding a secret-shared zero [NN05].

Secret-sharing a zero. One of the CP ’s could use the classify protocol to secret-
share zero, but the entity, who does the sharing, would know every CP ’s share.
There is, however a possibility, using more communication, to secret-share zero
without anyone knowing other CP ’s shares. To do that, every CP t first classifies
zero, which means that each CP t creates a polynomial gt

g1(x) = 0 + c11x+ c12x
2 + · · ·+ c1k−1x

k−1

g2(x) = 0 + c21x+ c22x
2 + · · ·+ c2k−1x

k−1

...

gn(x) = 0 + cn1x+ cn2x
2 + · · ·+ cnk−1x

k−1.

Secondly CPs sum up their own share and the ones received from others

g(x) =
n∑

i=1

gi(x) =
n∑

i=1

0 +
n∑

i=1

ci1x+
n∑

i=1

ci2x
2 + · · ·+

n∑
i=1

cik−1x
k−1

= 0 + c′1x+ c′2x
2 + · · ·+ c′k−1x

k−1.

28

In the end, we get a secret-shared zero JzeroK. The coefficients are unknown to
everyone as each CP t only knows its own addends (cti , i ∈ {1, k− 1}). Hence, the
shares are only known to their holders. Notice that this part of the protocol does
not depend on the value we want to reshare and so it can be precomputed during
the offline phase. It is also independent of the data type to use this for, as zero is
represented the same way for booleans, unsigned and signed integers. Complexity-
wise, secret-sharing a zero takes one round and n(n − 1)b bits of communication
between CPs.

Adding zero. Once we have a share for JzeroK, we can simply locally add it to
our share of the secret value JsK. In the following g represents the polynomial for
secret-shared zero, f for JsK and h for Js′ = s+ 0K.

g(x) = 0 + c′1x+ c′2x
2 + · · ·+ c′k−1x

k−1

f(x) = s+ cf 1x+ cf 2x
2 + · · ·+ cf k−1x

k−1

h(x) = g(x) + f(x)

= 0 + s+ c′1x+ cf 1x+ cf 2x
2 + c′2x

2 + · · ·+ c′k−1x
k−1 + cf k−1x

k−1

= s+ c′′1x+ c′′2x
2 + · · ·+ c′′k−1x

k−1.

The result represents the same secret s with different coefficients. These coefficients
are unknown to all CPs as the coefficients of a secret-shared zero are unknown.
This part of the protocol also clearly works on all data types, but JzeroK must
be secret-shared over the same field as is JsK, otherwise we might end up with
a different secret value. Say we have k = n = 2, s = 10 and we share zero as
an 8-bit unsigned integer, then the following polynomials could be created with
calculations for shares

g(x) = 0 + 200x

g(1) = 200

g(2) = 400 mod 251 = 149

f(x) = 10 + 3x

f(1) = 13

f(2) = 16

h(1) = 213

h(2) = 165.

Now, depending on the type of s and s′, we get

for 8-bit values

213 = s′ + c (mod 251)

165 = s′ + 2c (mod 251)

48 = −c (mod 251)

c = 203

s′ = 10

for 16-bit values

213 = s′ + c (mod 65521)

165 = s′ + 2c (mod 65521)

48 = −c (mod 65521)

c = 65473

s′ = 261 6= 10.

29

Algorithm 5 summarises the protocol for resharing a secret-shared value. As
the second part – adding zero – does not require any communication, the total
complexity is one round and n(n−1)b bits of data is transferred between computing
parties. There are multiple reasons, why we might need to reshare our values, for
instance before declassifying a value, as otherwise reusing that share somewhere
else leaks information. For more information on the importance of resharing,
see [Bog13, BLLP14]

Algorithm 5: Protocol for resharing a classified value Reshare(JsK)
Input: JsK
Result: Js′K with different shares, where s = s′

1 foreach computing party CP t do
2 Classify(0) // keeps gt(t) to oneself
3 Receive shares gi(t) from other CPs
4 Js′Kt = JsKt +

∑n
i=1 gi(t)

4.3 Declassification

After calculating a function using SMC on our secret-shared data, we may want
to declassify the result. This result is also secret-shared with Shamir’s secret
sharing scheme. To reconstruct the secret, we first reshare the value and then
everyone reveals their share. Published shares can be combined together using
polynomial interpolation, see Section 2.1. In the formulae (1) and (2), ti refers
to the participating CPs node numbers. Algorithm 6 describes the protocol for
reconstructing a secret value.

Algorithm 6: Protocol for reconstructing the secret Declassify(JsK)
Input: JsK, threshold k, participating CPs node numbers ti ∈ {1, . . . , n}
Result: Secret s

1 foreach computing party CP ti do
2 Js′K = Reshare(JsK)
3 CP ti sends Js′Kti to RP
4 RP calculates s =

∑
ti
Js′Ktibti

This protocol has two rounds, however as mentioned before reshare can be pre-
computed and so we have only one online round. Communication costs between
CPs and RP are kb bits. Resharing required n(n− 1)b bits, however we only need

30

the reshared shares for our k participating CPs so we get the cost k(k−1)b instead
for the offline phase.

If we want to use declassification inside other protocols so that all CPs know
the value, then the RP (one of the CPs can act as the RP) sends the values back,
i.e. we would have two rounds and kb+ nb. If we prioritise minimising the round
count, then k CPs can send their values to everyone and then all CPs reconstruct
themselves. This would lead to one round, but (n − 1)kb communication cost.
It would be possible to do load balancing and have k − 1 previous CPs send
their shares, however in that case we need to reshare all the shares and offline
communication cost would be n(n− 1)b.

Booleans as 8-bit unsigned integers run the same algorithm. Signed integers,
on the other hand, require some post-processing. More precisely, we revert, what
we did in Algorithm 4. After declassification, if s > p

2
, i.e. it is a negative value

represented as a large positive one, we subtract p, see Algorithm 7.

Algorithm 7: Protocol for declassifying a signed integer
Input: Prime p, JsK
Result: Signed secret value s

1 RP runs u = Declassify(JsK)
2 RP calculates:
3 if u < p

2
then

4 s = u
5 else
6 s = u− p

31

5 Arithmetic protocols
In this section, we shall give protocols for addition, subtraction and multiplica-
tion. They will be described for unsigned integers, however they can be used to
implement boolean arithmetic, as booleans were internally 8-bit unsigned inte-
gers. Signed integers also work without any extra effort due to their underlying
representation.

5.1 Addition and subtraction with a public value

We can just add the public value to, or subtract from, each share. This protocol,
see Algorithm 8, is done locally. We can see the additive inverse as the secret-
shared value subtracted from zero, i.e. −JsK = 0− JsK

Algorithm 8: Addition of a public value JsK + v (subtraction JsK− v)
Input: JsK, public value v
Result: JrK, where r = s+ v (subtraction r = s− v)

1 foreach computing party CP t do
2 compute JrKt = JsKt + v // subtraction JrKt = JsKt − v

Theorem 1. The addition and subtraction of a public value protocols in Algo-
rithm 8 are correct.

Proof. For correctness, we need to show that r = s+ v and r = s− v, correspond-
ingly. Let f(x) denote the polynomial for shares of s.

g(x) = f(x) + v = s+ v + c1x+ c2x
2 + · · ·+ ck−1x

k−1

g(x) = f(x)− v = s− v + c1x+ c2x
2 + · · ·+ ck−1x

k−1

The polynomial g(x) clearly represents shares of r and even the coefficients have
not changed.

Theorem 2. The addition and subtraction of a public value protocols in Algo-
rithm 8 are perfectly simulatable against a passive adversary.

Proof. As there is no communication, the protocol run is perfectly simulatable.
But the output shares depend on the input shares, hence it is not universally
composable.

32

Algorithm 9: Multiplication with a public value vJsK
Input: JsK, public value v
Result: JrK, where r = vs

1 foreach computing party CP t do
2 compute JrKt = JsKtv

5.2 Multiplication with a public value

We can just locally multiply each share with the public value, see Algorithm 9.

Theorem 3. The multiplication with a public value protocol in Algorithm 9 is
correct.

Proof. For correctness, we need to show that r = vs. Let f(x) denote the polyno-
mial for shares of s.

g(x) = f(x) · v = sv + vc1x+ vc2x
2 + · · ·+ vck−1x

k−1

= sv + c′1x+ c′2x
2 + · · ·+ c′k−1x

k−1,

The coefficients are changed for all shares, but we can see that polynomial g(x)
represents the Shamir secret-shared sv.

Theorem 4. The multiplication with a public value protocol in Algorithm 9 is
perfectly simulatable against a passive adversary.

Proof. Similarly to Theorem 2, the protocol is perfectly simulatable, but not uni-
versally composable.

5.3 Addition and subtraction for two shared values

This simple local protocol is given in Algorithm 10.

Algorithm 10: Addition of two secret values JqK+JrK (subtraction JqK−JrK)
Input: JqK, JrK
Result: JsK, where s = q + r (subtraction s = q − r).

1 foreach computing party CP t do
2 compute JsKt = JqKt + JrKt // subtraction JsKt = JqKt − JrKt

Theorem 5. The addition and subtraction protocols in Algorithm 10 are correct.

33

Proof. For correctness, we need to show that s = q + r and s = q − r corre-
spondingly. Let fq(x) denote the polynomial for shares of q and fr(x) for shares
of r.

fq(x) = q + cq1x+ cq2x
2 + · · ·+ cqk−1x

k−1

fr(x) = r + cr1x+ cr2x
2 + · · ·+ crk−1x

k−1

g(x) = fq(x) + fr(x) = q + r + cq1cr1x+ cq2cr2x
2 + · · ·+ cqk−1crk−1x

k−1

= q + r + c′1x+ c′2x
2 + · · ·+ c′k−1x

k−1

Again the coefficients are different, but g(x) represents the secret-shared q + r.
Subtraction works similarly.

Theorem 6. The addition and subtraction protocols in Algorithm 10 are perfectly
simulatable against a passive adversary.

Proof. Similarly to Theorem 2, the protocol is perfectly simulatable, but not uni-
versally composable.

5.4 Multiplication of two shared values

Let fq(x) denote the polynomial for shares of q and fr(x) for shares of r. If we
simply multiply the shares locally, we end up with a secret-shared polynomial fqr,
where fqr(0) = qr, but the degree is 2(k − 1):

fqr(x) = fq(x)fr(x)

= (q + cq1x+ cq2x
2 + · · ·+ cqk−1x

k−1)(r + cr1x+ cr2x
2 + · · ·+ crk−1x

k−1)

= qr + (qcr1 + rcq1)x+ (qcr2 + rcq2)x
2 + · · ·+ (qcrk−1 + rcqk−1)x

k−1

+ (cq1x+ cq2x
2 + · · ·+ cqk−1x

k−1)(cr1x+ cr2x
2 + · · ·+ crk−1x

k−1)

= qr + c′1x+ c′2x
2 + ...+ c′2(k−1)x

2(k−1).

We need to somehow reduce the result to a polynomial with degree k − 1, as
otherwise the secrets are no longer using k-out-of-n, but 2k-out-of-n threshold
scheme. This is the reason why multiplication of two shares cannot be done locally.
Note also that the polynomial we got is not a random one, hence we also need to
perform randomization. Gennaro, Rabin and Rabin [GRR98] showed how we can
achieve both in a single step. If we had a trusted entity, we could use the Lagrange’s
formula to declassify the multiplication result,

qr = fqr(0) =
n∑

i=1

fqr(ti)bi,

34

and then secret-share it to get shares for a polynomial with degree k − 1,

JqK · JrK = Classify(fqr(0)).

Notice that we need to have at least 2k − 1 participants, i.e. 2k − 1 ≤ n, to get
something useful from fqr. We can change the order of operations to eliminate
the need for a trusted entity. Each computing party ti first creates a random
polynomial

fqri(x) = fqr(ti)bi + c1ix+ c2ix
2 + ...+ ck−1ix

k−1,

then shares it to other CPs, i.e. sends fqri(x) to CPx. Finally, the CPs add all their
shares together. The full protocol is described in Algorithm 11. Multiplication
consists of one round and the only network usage comes from every CP running
the classification protocol. In total, the communication cost is n(n− 1)b bits.

Algorithm 11: Multiplication of two secret values JqK · JrK
Input: JqK, JrK
Result: JsK, where s = qr

1 foreach computing party CP t do
2 JzKt = JqKtJrKtbi
3 Classify(JzKt) // keeps fqrt(t) to oneself
4 Receive shares fqri(t) from other CPs
5 JsKt =

∑
fqri(t)

Theorem 7. The multiplication protocol in Algorithm 11 is correct.

Proof. For correctness, we need to show that s = qr. The sum calculated as the
result is

n∑
i=1

fqri(x) =
n∑

i=1

(fqr(ti)bi + c1ix+ c2ix
2 + ...+ cnix

k−1)

=
n∑

i=1

fqr(ti)bi +
n∑

i=1

c1ix+
n∑

i=1

c2ix
2 + ...+

n∑
i=1

ck−1ix
k−1

= qr + c′1x+ c′2x
2 + ...+ c′k−1x

k−1.

The polynomial fqr(x) clearly represents shares of qr.

Theorem 8. The multiplication protocol in Algorithm 11 is secure against a pas-
sive adversary.

35

Proof sketch. Algorithm 11 is symmetric for all the parties, hence we only need
to view one set of corrupt computing parties CPc1 , CPc2 , ..., CPck−1

(there were at
most k − 1 corrupt CPs). In total, the adversary sees values fqri(t) for every i ∈
{1, ..., n} and t ∈ {c1, ..., ck−1}, which are outputs from the classification algorithm
and, hence, are uniformly distributed and independent of the private inputs (shares
of q and r). We can build a perfect simulator by generating uniformly distributed
values and using them as honest parties’ outputs. The protocol is also universally
composable as simulator does not rewind adversary and input and output shares
are independent. Further details are out of the scope of this thesis.

5.5 Boolean arithmetic

As booleans are represented as 8-bit unsigned integers, we can use the same algo-
rithms for addition and multiplication.

Negation
¬JbK = 1− JbK

Using only subtraction makes negation a local operation.

Conjunction
JaK ∧ JbK = JaK · JbK

Disjunction
JaK ∨ JbK = JaK + JbK− JaK · JbK

Exclusive disjunction

JaK⊕ JbK = JaK + JbK− 2(JaK · JbK)

Conjunction, disjunction and exclusive disjunction use multiplication and some
also local operations such as addition or multiplying with a public value. Using
the multiplication protocol brings the complexity to one round and communication
cost up to n(n− 1)b = 8n(n− 1).

Theorem 9. The boolean arithmetic operations are correct.

Proof. Correctness follows directly from the operations definitions and correctness
of addition, subtraction and multiplication shown before.

Theorem 10. The boolean arithmetic operations are secure against a passive ad-
versary.

36

Proof sketch. All the sub-protocols used are perfectly simulatable, hence the main
protocols are also perfectly simulatable. Conjunction is just one multiplication,
hence it is universally composable. Disjunction and exclusive disjunction protocols
contain a universally composable multiplication in the output share calculation.
The shares of JcK = JaK · JbK are uniformly distributed values, that are independent
from JaKt and JbKt. Therefore, the disjunction result for CP t becomes

JcKt = JaKt + JbKt − JrKt = JaKt + Jr′Kt = Jr′′Kt

where Jr′Kt, Jr′′Kt are uniformly distributed and independent from JaKt and JbKt.
The actual proof is more detailed and involves explicit construction of the simula-
tor. However, these technical details are out of the scope of this thesis.

Similarly, for exclusive disjunction, the resulting share for CP t is

JcKt = JaKt + JbKt − 2JrKt = JaKt + JbKt − Jr′Kt = JaKt + Jr′′Kt = Jr′′′Kt

where Jr′Kt, Jr′′Kt, Jr′′′Kt are uniformly distributed and independent from JaKt and
JbKt. Therefore, disjunction and exclusive disjunction are universally composable.

37

6 Comparison operations
The algorithms for equality and less-than use various sub-protocols, which may
contain further sub-protocols. Figure 8 shows the dependencies between the build-
ing blocks for comparison operations.

LT

LTHalfPrime

LSB

BLT

EQ

RandomBitwise

prefixAND

⟦a⟧⨁⟦b⟧ ⟦a⟧∧⟦b⟧

Conjunct

RandomBit

⟦a⟧·⟦b⟧ Random Declassify

Figure 8: Protocol hierarchy

In the following protocols, let ai represent the ith bit of a, i.e. a =
∑`−1

i=0 2
iai,

where ` = b is the size of a in bits. Finding the ith bit for public values is trivial.
Let the vector of a’s bits JaK = {Ja`−1K, ..., Ja0K} represent a bitwise shared value.
We can get bitwise secret-shared values by running the bit decomposition protocol
(see Section 6.1.7) or bitwise sharing of a random number (see Section 6.1.8).

38

6.1 Sub-protocols

6.1.1 Secret-sharing a random value

Computing parties want to create a random value that no-one knows, but which
is a Shamir secret shared value, i.e. k parties can reconstruct it. This can be done
using Algorithm 12. First, every CP creates a random value si ← F and classifies
that, then all CPs add their random shares together.

Algorithm 12: Secret-sharing a random value Random()

Input: Finite field F
Result: JrK, where r ∈ F is uniformly distributed

1 foreach computing party CP t do
2 st

u← F
3 Classify(st) // keeps ft(t) to oneself
4 Receive shares fi(t) from other CPs
5 JrKt =

∑
fi(t)

This protocol cannot be used for booleans as it does not guarantee the secret
shared value to be in {0, 1}, see Section 6.1.2 for sharing a random bit. It does
work for signed integers as all the functionality used (classification, addition) we
have already described. Secret-sharing a random value requires one computation
round using one classification per CP . This results in total communication cost
of n(n − 1)b bits. As there are no inputs, random number sharing can be done
during the offline phase.

Theorem 11. The sharing a random value protocol in Algorithm 12 is correct.

Proof. To prove correctness, we need to show that r is a uniformly distributed
secret-shared value. During the classification step, each CP t creates a polynomial
ft,

f1(x) = s1 + c11x+ c12x
2 + · · ·+ c1k−1x

k−1

f2(x) = s2 + c21x+ c22x
2 + · · ·+ c2k−1x

k−1

...

fn(x) = sn + cn1x+ cn2x
2 + · · ·+ cnk−1x

k−1.

39

Later, adding their own and all the random shares received together, we get

f(x) =
n∑

i=1

fi(x) =
n∑

i=1

si +
n∑

i=1

ci1x+
n∑

i=1

ci2x
2 + · · ·+

n∑
i=1

cik−1x
k−1

=
n∑

i=1

si + c′1x+ c′2x
2 + · · ·+ c′k−1x

k−1.

The resulting polynomial f(x) clearly represents shares for a secret-shared value
J
∑n

i=1 siK. Adding together uniformly distributed values gives us a uniformly dis-
tributed value.

Theorem 12. The sharing a random value protocol in Algorithm 12 is secure
against a passive adversary.

Proof sketch. This sum J
∑n

i=1 siK is unknown to everyone, as each computing party
only knows its own addend si. Hence, no-one knows the value of r. No matter who
the corrupted parties are, the adversary only sees outputs from the classification
algorithm and hence uniformly distributed values. We can build a perfect simulator
by generating uniformly distributed values. As there are no input shares to depend
on and each CP t has their own uniformly distributed addend ft(t) that no-one else
knows in their resulting share, the protocol is universally composable.

6.1.2 Sharing a random bit

A straightforward way for getting a sharing of a random bit would be for all CPs to
share a random bit and then perform exclusive disjunction over those bits. There
is, however a more efficient way described by Damgård et al. [DFK+06]. We start
by randomly sharing a value JrK. Next, we compute JrK2 using the multiplication
protocol and declassify it. If r2 = 0 we are unlucky and have to start over,
otherwise we find its square root r′ =

√
r2, where 0 < r′ < p

2
. Finally, we find the

random bit by calculating 2−1(r′−1r + 1). The protocol is given in Algorithm 13.
In the complexity analysis, we see secret-sharing of a random value, multiplica-

tion and declassification. Note, that we do not need to reshare in the Declassify
algorithm, as multiplication is universally composable. Excluding the small prob-
ability of 1

|F | having to start over, we get two rounds and communication cost
of

n(n− 1)b+ n(n− 1)b+ k(n− 1)b = (2n+ k)(n− 1)b.

As there are no inputs, these random bits can be precomputed.

Finding the square root x =
√
x2 mod p. For simplicity ,we look at only the

case where p mod 4 = 3. This works for uint8 and if we need to create bits for

40

bigger types, then we can just convert up. Note, that, for complexity, we ignore
this and assume we have an algorithm for finding square roots for any data type.
For the restricted case, Cohen [Coh93] provides a simple formula

x = a(p+1)/4.

Since we need x < p
2
, then if we get p

2
< x < p we can use −x mod p to get the x

in the required range, i.e. we use p− x to get the right value.

Algorithm 13: Sharing a random bit RandomBit()
Input: Finite field F
Result: JbK, where b ∈ {0, 1} is a uniformly distributed bit

1 repeat
2 JrK = Random()
3 r2 = Declassify(JrK · JrK)
4 until r2 6= 0

5 r′ =
√
r2 // where 0 < r′ < p

2

6 JbK = 2−1(r′−1JrK + 1)

Theorem 13. The sharing a random bit protocol in Algorithm 13 is correct.

Proof. To prove correctness, we need to show that r is a uniformly distributed
secret-shared bit. We have two cases:

r′ =

{
r if r < p

2

−r if r ≥ p
2
.

The result b = 2−1(r′−1r + 1) is then

b =

 2−1(r−1r + 1) = 2−1(1 + 1) = 1 if r <
p

2

2−1((−r)−1r + 1) = 2−1(−1 + 1)= 0 if r ≥ p

2
,

hence b is in {0, 1}. Applying addition and multiplication with a (non-zero) public
value to a uniformly distributed value (r) results in a uniformly distributed value.
Uniformity of r additionally ensures that both cases from above are equally likely.

Theorem 14. The sharing a random bit protocol in Algorithm 13 is secure against
a passive adversary.

41

Proof sketch. First, we need to show that the published values do not leak any
information. We have two cases. Either the declassification result r2 = 0, in
which case we forget r and go to the beginning of the protocol, therefore there is
no information to be leaked. In the other case r2 6= 0, we learn that r = ±

√
r2

is either r′ or −r′, which is equally likely. We later get the final output bit based
on which one of those it happened to be, as we only need this one bit of unknown
and multiplication is universally composable, the declassification does not leak
anything.

Secondly, no-one knows the value of b, because no-one knows r (Theorem 12).
Thirdly, after the loop there are only local operations and, in repeat, all the sub-
protocols used are perfectly simulatable. Hence, the main protocol is perfectly
simulatable. As there are no input shares, random is universally composable and
declassification does not leak anything, the protocol is universally composable.

6.1.3 Conjunction of bits

The simplest, but not very efficient way to find the conjunction is to just conjunct
bits one by one, see Algorithm 14. Disjunction or exclusive disjunction over all
bits can be performed similarly.

Algorithm 14: Conjunction of bits Conjunct(JaK)
Input: Bitwise shared value JaK
Result: JbK, where b ∈ {0, 1} is the conjunction of a’s bits, i.e. b = ∧`−1i=0ai

1 JbK = Ja0K
2 for i = 0 to `− 1 do
3 JbK = JbK ∧ JaiK

It clearly works for any data type, however it would be unreasonable to run it
on booleans, as all the bits except the least significant bit are zero. Conjunction
is implemented via multiplication. This gives our naive solution the complexity of
`− 1 = b− 1 rounds and (b− 1)n(n− 1)b ≈ n(n− 1)b2 bits to transfer. It is trivial
to make this protocol better by doing operations in parallel and thus having log2 `
rounds with the same communication cost.

Theorem 15. The conjunction of bits protocol in Algorithm 14 is correct.

Proof. The result of this algorithm gives us

b = (((a0 ∧ a1) ∧ a2) ∧ · · · ∧ a`−2) ∧ a`−1

= a0 ∧ a1 ∧ a2 ∧ · · · ∧ a`−2 ∧ a`−1.

which is clearly conjunction of all bits.

42

Theorem 16. The conjunction of bits protocol in Algorithm 14 is secure against
a passive adversary.

Proof. Conjunction is universally composable, hence the conjunction of bits is also
universally composable.

6.1.4 Prefix-AND

The simplest, but not very efficient way to find prefix-AND is to just conjunct bits
one by one, keeping the intermediate values, see Algorithm 15. Prefix-OR and
prefix-XOR work analogically. Complexity is similar to conjunction of bits, b− 1
rounds and n(n− 1)b(b− 1) ≈ n(n− 1)b2 bits for communication.

Algorithm 15: Prefix-AND of bits PrefixAND(JaK)
Input: Bitwise shared value JaK
Result: JbK, where bi ∈ {0, 1} and bi = ∧`−1j=iaj for all i < `

1 Jb`−1K = Ja`−1K
2 for i = `− 2 to 0 do
3 JbiK = Jbi+1K ∧ JaiK

Theorem 17. The prefix-AND protocol in Algorithm 15 is correct.

Proof. The algorithm gives us

b`−1 = a`−1

b`−2 = b`−1 ∧ a`−2

= a`−2 ∧ a`−1

b`−3 = a`−3 ∧ a`−2 ∧ a`−1

...

b2 = a2 ∧ · · · ∧ a`−2 ∧ a`−1

b1 = b2 ∧ a1

= a1 ∧ a2 ∧ · · · ∧ a`−2 ∧ a`−1

b0 = b1 ∧ a0

= a0 ∧ a1 ∧ a2 ∧ · · · ∧ a`−2 ∧ a`−1,

which is clearly exactly what we want.
Theorem 18. The prefix-AND protocol in Algorithm 15 is secure against a passive
adversary.

Proof. Similarly to Theorem 16, the protocol is universally composable thanks to
the composition of sub-protocols.

43

6.1.5 Less-than for bitwise secret-shared values

We have two bitwise secret-shared values JaK and JbK and we want to compute

a
?
< b. Idea of this protocol is to find the most significant different bit. This can

be done by, first, finding the exclusive disjunction. Then prefix-OR on the result
and then subtracting each bit from the previous one. For example, e only has set
the most significant bit that a and b differ by. Knowing that bit, we can multiply
it with one of the values and determine whether that bit is set.

equation bits
a 00001011
b 00001101

c = a⊕ b 00000110
di = ∨`−1j=icj 00000111

ei = di − di+1 00000100

equation bits
b 00001101
e 00000100

yi = ai · bi 00000100∑
yi 1

The Algorithm 16 is only designed for unsigned integers. With booleans, it
simply does not make sense and it would be enough to compare only the least
significant bit. For signed integers, it would be easier with the modified two’s
complement version, but it is possible to make it work for centering around zero
too. However, as we did not need bitwise less-than on signed integers in practice,
we omit the details.

Algorithm 16: Less-than for bitwise secret-shared values BLT(JaK, JbK)
Input: Bitwise shared values JaK, JbK

Result: JxK, where x ∈ {0, 1} and x = (a
?
< b)

1 JcK = JaK⊕ JbK
2 JdK = PrefixOR(JcK)
3 Je`−1K = Jd`−1K
4 JeiK = JdiK− Jdi+1K for all i < `− 1

5 JxK =
∑`−1

i=0(JeiK · JbiK)

Analysing complexity, we can go line by line. First, the calculation of c requires
` = b parallel executions of the exclusive disjunction protocol, which gives us one
round and n(n−1)b2 bits to transfer. Second, we use prefix-OR for d, gaining b−1
rounds and n(n− 1)b(b− 1) communication cost. After some local operations, we
perform multiplication in parallel over all bits and get another round and n(n−1)b2.
In total, that makes b+ 1 rounds and

n(n− 1)b2 + n(n− 1)b(b− 1) + n(n− 1)b2 = n(n− 1)b(3b− 1) ≈ 3n(n− 1)b2

bits of communication.

44

Theorem 19. The bitwise less-than protocol in Algorithm 16 is correct.

Proof. We have three cases: a < b, a > b or a = b, see corresponding Tables 5, 6
and 7. Assume, that x is the most significant different bit if the values differ. If
the columns are merged, then there has to be the same value in that position in
the variables. The symbol ? denotes either 1 or 0. Clearly, only in the case of
a < b, we have a bit set in eb and hence x = 1.

Bit in position
Variable (`− 1) (`− 2)

...

1 0
a ? ? ? ?
b
c 0 0 0 0
d 0 0 0 0
e 0 0 0 0
eb 0 0 0 0

Table 5: Bitwise less-than execution for a = b

Bit in position
Variable (`− 1) (`− 2)

...

(x+ 1) x (x− 1)

...

1 0
a ? ? ? 0 ? ? ?
b 1 ? ? ?
c 0 0 0 1 ? ? ?
d 0 0 0 1 1 1 1
e 0 0 0 1 0 0 0
eb 0 0 0 1 0 0 0

Table 6: Bitwise less-than execution for a < b

Bit in position
Variable (`− 1) (`− 2)

...

(x+ 1) x (x− 1)

...

1 0
a ? ? ? 1 ? ? ?
b 0 ? ? ?
c 0 0 0 1 ? ? ?
d 0 0 0 1 1 1 1
e 0 0 0 1 0 0 0
eb 0 0 0 0 0 0 0

Table 7: Bitwise less-than execution for a > b

45

Theorem 20. The bitwise less-than protocol in Algorithm 16 is secure against a
passive adversary.

Proof sketch. All the sub-protocols are perfectly simulatable, hence this protocol
is too. It is also universally composable, as the resulting shares come from the
summation of universally composable multiplication protocol outputs.

6.1.6 Bit composition

Sometimes, we have a bitwise secret-shared value and we want to get the secret-
shared value itself. We can do that for unsigned integers by locally calculating

r =
`−1∑
i=0

2iri,

see Algorithm 17. Boolean bit composition would mean r = r0. For signed inte-
gers it simply works, because internally we have them as unsigned integers. For
example, for centering around zero representation, if the summation of bits would
add up to more than bp

2
c, then it is seen as a negative value and the declassification

for signed integers (see Algorithm 7) would subtract p.

Algorithm 17: Bit composition BitComposition(JaK)
Input: Bitwise shared value JaK
Result: JaK, where ai ∈ {0, 1} represent the bits of a

1 JaK =
∑`−1

i=0 2
iJaiK

Theorem 21. The bit composition protocol in Algorithm 17 is correct.

Proof. Correctness follows directly from the correctness of multiplication with pub-
lic value (Theorem 3) and addition (Theorem 5).

Theorem 22. The bit composition in Algorithm 17 is perfectly simulatable against
a passive adversary.

Proof. Similarly to Theorem 2, no communication but the outputs depend on the
input shares, therefore the protocol is only perfectly simulatable.

6.1.7 Bit decomposition

We have a secret-shared value JaK and we want to get its secret-shared bits JaK =
{Ja`−1K, ...Ja0K}, where ai denotes the i-th bit of a, i.e. a =

∑`−1
0 2iai. During this

work we did not implement the bit decomposition protocolBitDecomposition(JaK),
however we use it in some of the algorithms to show alternatives.

46

6.1.8 Bitwise sharing of a random number

We generate each bit separately in parallel and check that it is in bounds, i.e.
compute bitwise less-than r < p, reveal it. If it is false, then retry. The protocol
is given in Algorithm 18. It works for both signed and unsigned integers as both
of them have the same number of bits and internal representation. To create
random booleans we would simply use the RandomBit protocol. We can use
bit composition from Section 6.1.6 to also find JrK, which does not change the
complexity.

There are no input shares, so we can generate bitwise random numbers during
the offline phase. Complexity-wise, we ignore the 1 − |Zp|

|Z
2b
| probability for reruns.

We do not need to reshare in declassify as c comes from the universally composable
bitwise less-than protocol. There are the first two rounds, where we create the
random bits in parallel and b+1 rounds for bitwise less-than. The declassification
adds another round, which makes total b+ 4. Data communication adds up to

(2n+ k)(n− 1)b2 + n(n− 1)b(3b− 1) + k(n− 1)b

= (n− 1)b((2n+ k)b+ n(3b− 1) + k)

= (n− 1)b(5nb+ kb− n+ k)

≈ (n− 1)b(5nb+ kb) ≈ (n− 1)(5n+ k)b2.

Algorithm 18: Bitwise sharing of a random number RandomBitwise()
Input: Prime p, bit-length `
Result: JrK, where r is uniformly distributed, ri ∈ {0, 1} and r =

∑`−1
i=0 2

iri

1 repeat
2 JriK = RandomBit() for all i < `
3 JcK = BLT(JrK, p)
4 Declassify(JcK)
5 until c = 1

Theorem 23. The bitwise sharing of a random number protocol in Algorithm 18
is correct.

Proof. If we would just create random bits for each position, then we would clearly
get a uniformly distributed number in Z2` . On that uniformly distributed number,
we use rejection sampling and hence get a uniformly distributed value in Zp.

Theorem 24. The bitwise sharing of a random number protocol in Algorithm 18
is secure against a passive adversary.

47

Proof sketch. Firstly, lets look at the declassification. As there are no input shares
it could only leak information about the output shares. As a result from bitwise
less-than protocol c is a boolean value. We can ignore the case, when it is false,
as then we would throw away all the work we did and start from the beginning.
If c = 1 we learned that r < p, which does not say anything about r ∈ Zp as the
maximum value r can have is p− 1.

All the sub-protocols are perfectly simulatable, hence this protocol is too. The
output JrK comes from a universally composable protocol and is used only in a
universally composable protocol, hence this protocol is universally composable.

6.1.9 Least significant bit

The idea for least significant bit came from [NO07], see Algorithm 19, where

c0 ⊕ Jr0K =
{

Jr0K if c0 = 0
1− Jr0K if c0 = 1.

Algorithm 19: Least significant bit LSB(JaK)
Input: JaK
Result: JbK, where b ∈ {0, 1} and b = a0

1 JrK = RandomBitwise()
2 JrK = BitComposition(JrK)
3 JcK = JaK + JrK
4 c = Declassify(JcK)
5 JxK = c0 ⊕ Jr0K
6 JyK = BLT(c, JrK)
7 JbK = JxK⊕ JyK

It works on the internal representation and hence can be used for all data types.
Communication-demanding sub-protocols are bitwise random number sharing, de-
classification, bitwise less-than and exclusive disjunction. Bitwise random number
sharing and resharing from declassify can be done in parallel during precomputa-
tion. This gives us a round count of b+ 4 and data communication cost of

(n− 1)b(5nb+ kb− n+ k) + k(k − 1)b

= (5n2b+ nkb− n2 + nk − 5nb− kb+ n− 2k + k2)b

= ((5n2 + nk − 5n− k)b− n2 + nk + k2 + n− 2k)b

= ((5n+ k)(n− 1)b− n2 + nk + k2 + n− 2k)b

≈ (n− 1)(5n+ k)b2.

48

In the online phase, we have 1 + (b+ 1) + 1 = b+ 3 rounds and communication

k(n− 1)b+ n(n− 1)b(3b− 1) + n(n− 1)b

= (n− 1)(k + 3nb)b

≈ 3n(n− 1)b2.

Theorem 25. The least significant bit protocol in Algorithm 19 is correct.

Proof. For correctness, we need to show, that b = a0. The least significant bit of
c = a+ r is

c0 =

{
a0 ⊕ r0 if c ≥ r

a0 ⊕ r0 ⊕ 1 if c < r,

as only an overflow would make c < r true, in which case p is subtracted from c.
As p is odd, it flips the least significant bit. Then we get

b = x⊕ y = c0 ⊕ r0 ⊕ (c
?
< r)

=

{
c0 ⊕ r0 ⊕ 0 if c ≥ r

c0 ⊕ r0 ⊕ 1 if c < r

=

{
a0 ⊕ r0 ⊕ r0 if c ≥ r

(a0 ⊕ r0 ⊕ 1)⊕ r0 ⊕ 1 if c < r

= a0.

Theorem 26. The least significant bit protocol in Algorithm 19 is secure against
a passive adversary.

Proof sketch. We need to show, that declassification does not leak any information.
The value r comes from a universally composable RandomBitwise, but JrK and
JrK depend on each other. We declassify a + r, where r is a random uniformly
distributed value, hence a + r is a random uniformly distributed value. Unless
we reveal r later, we are safe. The only place r is later used non-locally is in the
bitwise less-than protocol, which is universally composable and therefore does not
leak information about r. Further details are out of the scope of this thesis.

All the sub-protocols used are perfectly simulatable and the resulting shares
come from universally composable exclusive disjunction, hence the protocol is uni-
versally composable.

49

6.1.10 Comparison to half prime for unsigned integers

Something multiplied with two always has a least significant bit zero. However, if
there was an overflow, then the least significant bit will be one as p was subtracted.
Hence, we can find (a < p

2
) = LSB(2a mod p). We only need to find the least

significant bit. Therefore, the round and communication complexities are equal.
Boolean values are clearly always less than half of the prime. For signed integers,
the Algorithm 20 finds the comparison to their internal representation. That is
handy for the centering around zero representation, where it shows if the value is
positive or negative.

Algorithm 20: Compare to half prime LTHalfPrime(JaK)
Input: JaK

Result: JbK, where b ∈ {0, 1} and b = (a
?
< p

2
)

1 JbK = LSB(2JaK)

Theorem 27. The comparison to half prime protocol in Algorithm 20 is correct.

Proof. To prove correctness, we need to show that b is zero if a < p
2
and one

otherwise. We have two cases:

a ∈ {0, ..., p− 1

2
} ⇐⇒ LSB(2a mod p) = LSB(2a) = 0

a ∈ {p− 1

2
+ 1, ..., p− 1} ⇐⇒ LSB(2a mod p) = LSB(2a− p) = 1.

Theorem 28. The comparison to half prime protocol in Algorithm 20 is secure
against a passive adversary.

Proof. The least significant bit protocol is universally composable, hence this pro-
tocol is universally composable too.

6.2 Equality

The first thing to notice about equality is that the problems JaK ?
= JbK and JaK−

JbK ?
= 0 are equivalent. Hence, now we just need to check if the value is zero

JzK ?
= 0. Also, we need to implement equality only on the underlying unsigned

data type, as two booleans or signed integers are equal iff their underlying unsigned
values are equal.

50

6.2.1 Equality with a public result

Finding out equality to zero is easier, when the result can be public. We can share
a random value r using Algorithm 12 and multiply it with JzK. Now we declassify
JrK · JzK. This does not leak any information as r is an unknown value. If rz 6= 0,
then z 6= 0. Otherwise, either z and/or r was zero. We can now declassify r. As
the multiplication result was zero, we do not leak any information about z other
than z

?
= 0. If we get r = 0, we just choose another random value and repeat the

algorithm, as we were unlucky and learned nothing (0z = 0). The protocol is given
in Algorithm 21 and its time complexity is probabilistic. We need to start over
only if our secret-shared random value happened to be zero. The value is uniformly
chosen from F , therefore the probability of going to the beginning of the loop is
1
|F | . Note, that without revealing r, we could find equality with probability |F |−1|F |
(which can be increased by performing it multiple times).

Complexity-wise, we again ignore the rerun probability. Therefore, we have
a random number sharing, multiplication and two declassifications in the worst
case. Note, that resharing is not needed in declassifications and so only random is
generated in the offline phase. For the online phase, we get three rounds and

n(n− 1)b+ 2k(n− 1)b = (n+ 2k)(n− 1)b

bits communication cost.

Algorithm 21: Equality with a public result EQPublic(JaK, JbK)
Input: JaK, JbK
Result: e = (a

?
= b)

1 JzK = JaK− JbK
2 while true do
3 JrK = Random()
4 if Declassify(JrK · JzK) 6= 0 then
5 return false

6 else if Declassify(JrK) 6= 0 then
7 return true

// Else we didn’t learn anything as 0z = 0

Theorem 29. The equality with a public result protocol in Algorithm 21 is correct.

Proof. To prove correctness, we need to show that e is true if a = b and false
otherwise. In the first case, z = 0, next rz = 0. Finally, when r 6= 0, which with

51

probably |F |−1|F | happens on the first run (if not, then some later loop execution),
then true is returned. When a 6= b, we get z 6= 0 and rz 6= 0, which return false.
Multiplication can only result in zero, if either or the values are zero, because we
do not have zero divisors in our prime groups, e.g. for uin8 we do not have any
values that zr = 251.

Theorem 30. The equality with a public result protocol in Algorithm 21 is secure
against a passive adversary.

Proof sketch. Firstly, we need to show, that published values do not leak any
information except the result of equality testing. Since r is a uniformly distributed
random value and all operations are in a finite field, declassification of rz does
not reveal anything about z. Lets examine the case, when we reach the second
declassification. If a = b then rz = 0 otherwise if a 6= b it is a random field
element. If r = 0 then we learn nothing. If r 6= 0 then z = 0, which can hold
only if a = b. Consequently the distribution of published results can be efficiently
simulated knowing only the output a = b.

Subtraction is perfectly simulatable and the other sub-protocols used are uni-
versally composable, therefore this protocol leaks nothing beyond public outputs.
Since public outputs can be simulated by knowing the output, this protocol is
universally composable.

6.2.2 Equality with bit decomposition

Damgård et al. [DFK+06] describe one way to check if a value is zero by performing
a bit decomposition and then finding the conjunction of negations of all those bits
(or negation of bits disjunction), see Algorithm 22. The total complexity becomes
the added complexity of bit decomposition and disjunction of bits. As we did not
implement bit decomposition, this protocol is also not implemented in this work.

Algorithm 22: Equality with bit decomposition EQbd(JaK, JbK)
Input: JaK, JbK
Result: JeK, where e = (a

?
= b)

1 JzK = JaK− JbK
2 JzK = BitDecomposition(JzK)
3 JeK = ¬Disjunct(JzK)

Theorem 31. The equality with bit decomposition protocol in Algorithm 22 is
correct.

52

Proof. To prove correctness, we need to show that e is one, if a = b and zero,
otherwise. In the first case,

a = b

z = 0

zi = 0 for all i < l

e = ¬ ∨`−1
i=0 (zi) = ¬ ∨`−1

i=0 (0) = ¬0 = 1.

When the values are not equal,

a 6= b

z 6= 0

∃zi 6= 0

e = ¬ ∨`−1
i=0 (zi) = ¬(... ∨ 1 ∨ ...) = ¬1 = 0.

6.2.3 Equality without bit decomposition

Performing bit decomposition is not very efficient for Shamir’s secret sharing.
Therefore, Nishide and Ohta [NO07] created a simpler algorithm by randomiz-
ing z and checking if it is equal to the random value used. We start by sharing
bits for a random value JrK, then add it to JzK and declassify the result JcK. Next,
we check the equality of each bit for c and r. Finally, we perform conjunction over
all those bits. The protocol is given in Algorithm 23, where

(ci
?
= JriK) =

{
JriK if ci = 1
1− JriK if ci = 0.

This protocol allows some work to be done offline, namely bitwise sharing of
a random number and resharing from declassify. As it is done offline, it is clearly
independent and can be done in parallel, making the round count max(b+4, 1) =
b+ 4 and the communication cost (same as LSB, see Section 6.1.9)

(n− 1)b((5n+ k)b− n+ k) + k(k − 1)b

≈ (n− 1)(5n+ k)b2.

The online phase requires b− 1 + 1 = b rounds and the communication cost is

k(n− 1)b+ n(n− 1)(b− 1)b = (n− 1)(k + nb− n)b ≈ (n− 1)nb2.

53

Algorithm 23: Equality without bit decomposition EQ(JaK, JbK)
Input: JaK, JbK, bit-length `

Result: JeK, where e = (a
?
= b)

1 JzK = JaK− JbK
2 JrK = RandomBitwise()
3 JrK = BitComposition(JrK)
4 JcK = JzK + JrK
5 c = Declassify(JcK)
6 JxiK = (ci

?
= JriK) for all i < `

7 JeK = Conjunct(JxK)

Theorem 32. The equality without bit decomposition protocol in Algorithm 23 is
correct.

Proof. To prove correctness, we need to show that e is one if a = b and zero
otherwise. In the first case

a = b

z = 0

c = z + r = r

xi = (ci
?
= ri) = 1 for all i < l

e = ∧`−1i=0(xi) = ∧`−1
i=0(1) = 1.

When the values are not equal

a 6= b

z 6= 0

c = z + r 6= r

xi = (ci
?
= ri) for all i < l

∃(ci 6= ri)⇐⇒ ∃xi 6= 0

e = ∧`−1i=0(xi) = ... ∧ 0 ∧ ... = 0.

Theorem 33. The equality without bit decomposition protocol in Algorithm 23 is
secure against a passive adversary.

Proof. All the sub-protocol are perfectly simulatable and the resulting shares come
from conjunction, which is universally composable, hence this protocol is univer-
sally composable too.

54

6.3 Less-than

For less-than comparison, we can again use bit decomposition [DFK+06], but a
better option was discovered by Nishide and Ohta [NO07], who used comparison
to p

2
. For the boolean datatype, less-than comparison does not make sense, so we

do not consider it at all.

6.3.1 Less-than with bit decomposition

Once we have the bitwise sharing of values, we can simply use bitwise less than
comparison, see Algorithm 24. Total complexity becomes the added complexity
of two parallel bit decompositions and a bitwise less-than protocol. As we did not
implement bit decomposition, this protocol is also not implemented during this
work.

Algorithm 24: Less-than with bit decomposition LTbd(JaK, JbK)
Input: JaK, JbK

Result: JeK, where e = (a
?
< b)

1 JaK = BitDecomposition(JaK)
2 JbK = BitDecomposition(JbK)
3 JeK = BLT(JaK, JbK)

Theorem 34. The less-than with bit decomposition protocol in Algorithm 24 is
correct for unsigned integers.

Proof. Correctness follows directly from correctness of the bitwise less-than pro-
tocol, which gives us one iff a < b.

6.3.2 Less than without bit decomposition

We first find w = a < p
2
, x = b < p

2
and y = a − b < p

2
. Then it is possible to

calculate less-than, see Tables 8 and 9 for unsigned and signed values respectively.
Merged cells indicate equal value and question mark in the tables represents either
zero or one.
For unsigned integers, our formula becomes

e = w(1− x) + wx(1− y) + (1− w)(1− x)(1− y)

= 1− x− y + xy + wx+ wy − 2wxy

= 1− x− y + xy + w(x+ y − 2xy).

55

a < p
2

b < p
2

a− b < p
2

a < b
1 0 ? 1
0 1 ? 0

? 0 1
? 1 0

Table 8: Less-than for unsigned integers

a < p
2

b < p
2

a− b < p
2

a < b
1 0 ? 0
0 1 ? 1

? 0 1
? 1 0

Table 9: Less-than for signed integers in centered around zero representation

For signed integers,

e = (1− w)x+ wx(1− y) + (1− w)(1− x)(1− y)

= 1− w − y + xy + wx+ wy − 2wxy

= 1− w − y + xy + w(x+ y − 2xy).

The full protocol is given in Algorithm 25. There are three parallel executions
of bitwise less-than protocol and then two multiplications. Sadly no work can be
done during the offline phase, but the online phase has b+1+2 · 1 = b+3 rounds.
The communication cost is

3n(n− 1)b(3b− 1) + 2n(n− 1)b = (9b− 1)n(n− 1)b ≈ 9n(n− 1)b2.

Algorithm 25: Less than LT(JaK, JbK)
Input: JaK, JbK

Result: JeK, where e = (a
?
< b)

1 JwK = BLT(JaK, p
2
)

2 JxK = BLT(JbK, p
2
)

3 JyK = BLT(JaK− JbK, p
2
)

4 JxyK = JxK · JyK
5 Jx′K = JxK // (signed integers Jx′K = JwK)
6 JeK = 1− Jx′K− JyK + JxyK + JwK · (JxK + JyK− 2JxyK)

56

If we want to use this algorithm with signed integers in the modified two’s
complement representation, we need to check if the values a and/or b are in the
range {bp

2
c + 1, ..., bp

2
c + bd

2
c}. To do that, we compare a and a + bd

2
c to half of

the prime p. Table 10 shows how less-than can be calculated for that signed value
representation, however, as this is not our chosen representation, we omit further
details.

a b
< 0 [0, p

2
) (p

2
, bp

2
c+ bd

2
c] < 0 [0, p

2
) (p

2
, bp

2
c+ bd

2
c] a− b < p

2
a < b

1 0 0 0 ? ? ? 1
0 1 0 1 ? ? ? 0
0 1 0 0 0 1 ? 1
0 0 1 ? ? 0 ? 0
1 0 0 1 0 0

0 10 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0

1 00 1 0 0 1 0
0 0 1 0 0 1

Table 10: Less-than for integers in modified two’s complement representation

Theorem 35. The less-than without bit decomposition protocol in Algorithm 25
is correct.

Proof. To prove correctness, we need to show that e is one if a < b and zero
otherwise. First lets examine the situation, where either a or b is larger than half
of the prime, but not both of them, i.e. w 6= x. Now, the result for unsigned
integers is

e = 1− x− y + xy + w(x+ y − 2xy)

=

{
1− x− y + xy = 0 if w = 0 and x = 1 i.e. a ∈ [p

2
, p), b ∈ [0, p

2
)

1− y + wy = 1 if w = 1 and x = 0 i.e. a ∈ [0, p
2
), b ∈ [p

2
, p).

The result for signed integers is

e = 1− w − y + xy + w(x+ y − 2xy)

=

{
1− y + xy = 1 if w = 0 and x = 1 i.e. a ∈ (−p

2
, 0), b ∈ [0, p

2
)

1− w − y + wy = 0 if w = 1 and x = 0 i.e. a ∈ [0, p
2
), b ∈ (−p

2
, 0).

57

The alternative situation, i.e. both a and b are in the same region, hence w = x
gives us

e = 1− x′ − y + xy + w(x+ y − 2xy)

= 1− x′ − y + x′y + x′(x′ + y − 2x′y)

= 1− x′ − y + x′y + x′ + x′y − 2x′y

= 1− y

=

{
0 if y = 1 i.e. a− b did not overflow, hence a ≥ b

1 if y = 0 i.e. a− b overflowed, hence a < b.

Theorem 36. The less-than without bit decomposition protocol in Algorithm 25
is secure against a passive adversary.

Proof sketch. All the sub-protocols are perfectly simulatable, hence this protocol
is perfectly simulatable.

The resulting shares come from JwK, JxK, JyK and JxyK, which were created
by universally composable bitwise less-than and multiplication protocols. These
shares, which are uniformly distributed and independent from the input shares
JaKt and JbKt are then added or subtracted from each other. Therefore, similarly
to Theorem 10, this protocol is universally composable.

58

7 Comparison of protection domains

7.1 Complexity

Table 11 summarises together all the complexities given in the previous sections of
the protocols implemented during this work. For some of the algorithms, such as
conjunction of bits and Prefix-AND, there are better solutions out there [DFK+06,
NO07]. Many of the latter algorithms, e.g. less-than for bitwise shared values, de-
pend on them, see Figure 8. Therefore, future work improving the complexity of
Prefix-Or also improves the complexities of equality testing and less-than compar-
ison.

Offline Online
Protocol name Rounds Data Rounds Data
Classify 0 0 1 nb
Reshare 1 n(n− 1)b 0 0
Declassify 1 k(k − 1)b 1 kb
JaK + JbK 0 0 0 0
cJaK 0 0 0 0
JaK · JbK 0 0 1 n(n− 1)b
¬JbK 0 0 0 0
JaK ∧ JbK

0 0 1 n(n− 1)bJaK ∨ JbK
JaK⊕ JbK
Random 1 n(n− 1)b 0 0
RandomBit 2 (2n+ k)(n− 1)b 0 0
Conjunct

0 0 b− 1 ≈ n(n− 1)b2
Disjunct
PrefixAND
PrefixOR
PrefixXOR
BLT 0 0 b+ 1 ≈ 3n(n− 1)b2

BitComposition 0 0 0 0
RandomBitwise b+ 4 ≈ (n− 1)(5n+ k)b2 0 0
LSB b+ 4 ≈ (n− 1)(5n+ k)b2 b+ 3 ≈ 3n(n− 1)b2

LTHalfPrime b+ 4 ≈ (n− 1)(5n+ k)b2 b+ 3 ≈ 3n(n− 1)b2

EQPublic 1 n(n− 1)b 3 (n+ 2k)(n− 1)b
EQ b+ 4 ≈ (n− 1)(5n+ k)b2 b ≈ (n− 1)nb2

LT 0 0 b+ 3 ≈ 9n(n− 1)b2

Table 11: Complexities for protocols in this work

59

additive3pp shamirnpp
Offline Online Offline Online

Protocol
name

Rounds Data Rounds Data Rounds Data Rounds Data

Classification 0 0 1 3b 0 0 1 3b
Resharing 1 6b 0 0 1 6b 0 0
Declassification 1 6b 1 3b 1 2b 1 2b
JaK + JbK 0 0 0 0 0 0 0 0
cJaK 0 0 0 0 0 0 0 0
JaK · JbK 1 12b 1 3b 0 0 1 6b
Equality 0 0 log2 b+ 2 22b+ 6 b+ 4 34b2 b 6b2 − 2b
Less than 0 0 log2 b+ 3 12b log2 b+ 48b+ 16 0 0 b+ 3 54b2 − 6b

Table 12: Complexities comparison60

In order to better compare this work to the additive secret-sharing protocol
suite, we created a PD for our shamirnpp PDK. As the additive scheme uses three
parties, we also use three parties (n = 3), but as the multiplication protocol has
a requirement 2k − 1 ≤ n, we need to make k = 2, hence 2-out-of-3 Shamir’s
scheme. We split the additive protocol suite complexities to online and offline
phase. See Table 12 for comparison of rounds and data communication costs. One
of the things to notice is that the multiplication and declassification protocols are
theoretically better on shamirnpp. The more complicated operations, however,
do not look that promising. We would like to stress, that this work is an initial
attempt to implement a protocol suite inspired by Shamir’s secret sharing scheme
on Sharemind, while the protocol suite inspired by additive secret sharing has
gotten many optimisations over the years.

7.2 Practical performance

To get the idea of how efficient our protocol implementations were, we bench-
marked them against the additive three-party protocol suite. Here we use the same
2-out-of-3 Shamir’s scheme as in complexities comparison. The initial benchmark-
ing was done on different sizes of arrays of uint8’s. For the testing, we used a
single laptop with 1.7 GHz processor for running all three CPs. Multiplication
comparison can be seen in Figure 9 and equality testing in Figure 10. The graphs
additionally show how fast operations on public data were. The multiplication pro-
tocols offer similar performance, with our implementation being faster on smaller
input sizes. The trend, however, is not in our favour and our multiplication is
becoming slower as the input size increases. The Equality comparison graph, how-
ever, does not look that promising. In Figure 10, we can see that our protocol is
about three times slower than the additive one.

61

●●● ●

● ● ●
● ● ●

● ● ●

0.00

0.02

0.04

0.06

0 2500 5000 7500 10000
Number of parallel operations

D
u
ra

ti
o
n
 i
n
 s

ec
o
n
d
s

label

● Additive

Public

Shamir

Figure 9: Multiplication performance comparison

●●● ● ● ● ● ● ● ● ● ● ●

0.0

0.1

0.2

0.3

0 2500 5000 7500 10000
Number of parallel operations

D
u
ra

ti
o
n
 i
n
 s

ec
o
n
d
s

label

● Additive

Public

Shamir

Figure 10: Equality performance comparison

62

8 Conclusion
Secure multi-party computation allows us to perform analysis on private data
without compromising it. Therefore, practical solutions for SMC are very welcome
and Sharemind is one of the examples of such frameworks. There are already
various protocol suites implemented on Sharemind, such as an additive three-party
protocol suite. In this thesis, we designed and implemented a protocol suite, that
was inspired by Shamir’s secret sharing scheme. The latter is a popular way to
divide a secret into pieces, called shares.

The main result of this thesis are the implemented protocols with correctness
and security proofs. We created a new protection domain kind shamirnpp, that
allows one to create protection domains for various n-out-of-k Sharmir’s secret-
sharing schemes. This PDK can now be used to write secure applications in
the SecreC language. More specifically, we implemented protocols for addition,
multiplication, boolean arithmetic and comparison operations. These protocols
are the building blocks for various other functions one would want to possess, when
analysing private data. As Sharemind has a standard library and a possibility to
write domain-polymorphic code, many additional features, such as the absolute
value function, can already be used with our newly implemented PDK.

The goal of this work was to explore another SMC implementation option and
compare it to the existing one on Sharemind. Our new protection domain kind
based on Shamir’s scheme was compared to additive3pp. Looking at simpler pro-
tocols, such as declassification or multiplication, we saw that our SMC algorithms
offer better theoretical complexity. That was also evident from the benchmarking
results for smaller input sizes. For larger inputs and more complicated operations,
such as equality testing and less-than comparison, we had to admit additive3pp
being better. One of the reasons, for the performance difference, is our naive im-
plementations forConjunct and PrefixAND algorithms. Many other algorithms
depend on their performance, see Figure 8, and improving it would improve the
speed of equality testing and less-than comparison.

This brings us to future work. As mentioned before, some of the protocols from
this thesis could be improved. There are also other algorithms that could be added
to our protocol suite. For example, it may be useful, if we could convert shares
into a different PD’s shares. In this thesis, we in theory separated the offline and
online phase, in practice, we did not. Shamir’s k-out-of-n threshold scheme would
allow to handle some CPs disappearing or dealing with more corrupted parties.
Exploring the implementation specifics of protocol interruption is an interesting
topic for further research.

63

References
[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient com-

putation modulo a shared secret with application to the generation of
shared safe-prime products. In Moti Yung, editor, Advances in Cryp-
tology — CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 417–432. Springer Berlin Heidelberg, 2002.

[AS11] Cybernetica AS. Deliverable D3.1: Technology-independent secure
virtual machine architecture, 2011. Secure Virtual Machines and
Languages–Project Technical document for Sharemind 3.

[BCD+09] Peter Bogetoft, DanLund Christensen, Ivan Damgård, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, JanusDam Nielsen, JesperBuus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas
Toft. Secure multiparty computation goes live. In Roger Dingledine
and Philippe Golle, editors, Financial Cryptography and Data Security,
volume 5628 of Lecture Notes in Computer Science, pages 325–343.
Springer Berlin Heidelberg, 2009.

[BDJ+06] Peter Bogetoft, Ivan Damgård, Thomas Jakobsen, Kurt Nielsen, Jakob
Pagter, and Tomas Toft. A practical implementation of secure auctions
based on multiparty integer computation. In Giovanni Crescenzo and
Avi Rubin, editors, Financial Cryptography and Data Security, volume
4107 of Lecture Notes in Computer Science, pages 142–147. Springer
Berlin Heidelberg, 2006.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: A
System for Secure Multi-party Computation. In Proceedings of the 15th
ACM Conference on Computer and Communications Security, CCS
’08, pages 257–266, New York, NY, USA, 2008. ACM.

[Bla79] George R. Blakley. Safeguarding Cryptographic Keys. In Proceedings
of the 1979 AFIPS National Computer Conference, volume 48, pages
313–317, June 1979.

[BLLP14] Dan Bogdanov, Peeter Laud, Sven Laur, and Pille Pullonen. From in-
put private to universally composable secure multi-party computation.
In Proceedings of the 2014 IEEE 27th Computer Security Foundations
Symposium, CSF ’14. IEEE Computer Society, 2014. To appear.

[BLR13] Dan Bogdanov, Peeter Laud, and Jaak Randmets. Domain-Polymor-
phic Programming of Privacy-Preserving Applications. In Proceed-

64

ings of the First ACM Workshop on Language Support for Privacy-
enhancing Technologies, PETShop ’13, ACM Digital Library, pages
23–26. ACM, 2013.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A frame-
work for fast privacy-preserving computations. In Proceedings of the
13th European Symposium on Research in Computer Security: Com-
puter Security, ESORICS ’08, pages 192–206, Berlin, Heidelberg, 2008.
Springer-Verlag.

[Bog13] Dan Bogdanov. Sharemind: programmable secure computations with
practical applications. PhD thesis, University of Tartu, 2013.

[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dim-
itropoulos. SEPIA: Privacy-preserving Aggregation of Multi-domain
Network Events and Statistics. In Proceedings of the 19th USENIX
Conference on Security, USENIX Security’10, pages 15–15, Berkeley,
CA, USA, 2010. USENIX Association.

[BTW12] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure
multi-party computation for financial data analysis (short paper). In
Proceedings of the 16th International Conference on Financial Cryp-
tography and Data Security. FC’12, pages 57–64, 2012.

[CD05] Ronald Cramer and Ivan Damgård. Multiparty computation, an in-
troduction. In Contemporary Cryptology, Advanced Courses in Math-
ematics - CRM Barcelona, pages 41–87. Birkhäuser Basel, 2005.

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion,
pseudorandom secret-sharing and applications to secure computation.
In Joe Kilian, editor, Theory of Cryptography, volume 3378 of Lecture
Notes in Computer Science, pages 342–362. Springer Berlin Heidelberg,
2005.

[CMF+14] Koji Chida, Gembu Morohashi, Hitoshi Fuji, Fumihiko Magata, Akiko
Fujimura, Koki Hamada, Dai Ikarashi, and Ryuichi Yamamoto. Im-
plementation and evaluation of an efficient secure computation system
using ’R’ for healthcare statistics. Journal of the American Medical
Informatics Association, 2014.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory.
Springer-Verlag New York, Inc., New York, NY, USA, 1993.

65

[DFK+06] Ivan Damgård, Matthias Fitzi, Eike Kiltz, JesperBuus Nielsen, and
Tomas Toft. Unconditionally secure constant-rounds multi-party com-
putation for equality, comparison, bits and exponentiation. In Shai
Halevi and Tal Rabin, editors, Theory of Cryptography, volume 3876
of Lecture Notes in Computer Science, pages 285–304. Springer Berlin
Heidelberg, 2006.

[Flo63] Ivan Flores. The Logic of Computer Arithmetic. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1963.

[Gei10] Martin Geisler. Cryptographic Protocols:: Theory and Implementation.
PhD thesis, Aarhus University, Faculty of Science, Department, 2010.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing, STOC ’09, pages 169–178, New York, NY, USA, 2009.
ACM.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified vss and
fast-track multiparty computations with applications to threshold cryp-
tography. In Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’98, pages 101–111,
New York, NY, USA, 1998. ACM.

[Ham14] Koki Hamada. MEVAL: A Practically Efficient System for Secure
Multi-party Statistical Analysis. Presented at Workshop on Applied
Multi-Party Computation, Microsoft Research, Redmond, February
2014.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider,
and Immo Wehrenberg. TASTY: Tool for Automating Secure Two-
party Computations. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS ’10, pages 451–462, New
York, NY, USA, 2010. ACM.

[Jag10] Roman Jagomägis. SecreC: a Privacy-Aware Programming Language
with Applications in Data Mining. Master’s thesis, Institute of Com-
puter Science, University of Tartu, 2010.

[KBdH09] F. Kerschbaum, D. Biswas, and S. de Hoogh. Performance compari-
son of secure comparison protocols. In Database and Expert Systems
Application, 2009. DEXA ’09. 20th International Workshop on, pages
133–136, August 2009.

66

[KBLV13] Liina Kamm, Dan Bogdanov, Sven Laur, and Jaak Vilo. A new way to
protect privacy in large-scale genome-wide association studies. Bioin-
formatics, 29(7):886–893, 2013.

[KW13] Liina Kamm and Jan Willemson. Secure Floating-Point Arithmetic
and Private Satellite Collision Analysis. Cryptology ePrint Archive,
Report 2013/850, 2013. http://eprint.iacr.org/.

[Mal11] Lior Malka. VMCrypt: Modular Software Architecture for Scalable
Secure Computation. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS ’11, pages 715–724, New
York, NY, USA, 2011. ACM.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay
— a secure two-party computation system. In In USENIX Security
Symposium, pages 287–302, 2004.

[NN05] Ventzislav Nikov and Svetla Nikova. On proactive secret sharing
schemes. In Helena Handschuh and M.Anwar Hasan, editors, Selected
Areas in Cryptography, volume 3357 of Lecture Notes in Computer Sci-
ence, pages 308–325. Springer Berlin Heidelberg, 2005.

[NO07] Takashi Nishide and Kazuo Ohta. Multiparty computation for interval,
equality, and comparison without bit-decomposition protocol. In Tat-
suaki Okamoto and Xiaoyun Wang, editors, Public Key Cryptography
– PKC 2007, volume 4450 of Lecture Notes in Computer Science, pages
343–360. Springer Berlin Heidelberg, 2007.

[Pul13] Pille Pullonen. Actively Secure Two-Party Computation: Efficient
Beaver Triple Generation. Master’s thesis, Institute of Computer Sci-
ence, University of Tartu, 2013.

[Reb10] Reimo Rebane. An integrated development environment for the SecreC
programming language. Bachelor’s thesis. University of Tartu, 2010.

[Reb12] Reimo Rebane. A Feasibility Analysis of Secure Multiparty Compu-
tation Deployments. Master’s thesis, Institute of Computer Science,
University of Tartu, 2012.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
November 1979.

[Tal11] Riivo Talviste. Deploying secure multiparty computation for joint data
analysis—a case study. Master’s thesis, Institute of Computer Science,
University of Tartu, 2011.

67

http://eprint.iacr.org/

[Vic61] William Vickrey. Counterspeculation, auctions, and competitive sealed
tenders. The Journal of Finance, 16(1):8–37, 1961.

[WR67] E.T. Whittaker and G. Robinson. The Calculus of Observations: A
Treatise on Numerical Mathematics 4th ed. Dover Publications, New
York, 1967. §17 "Lagrange’s Formula of Interpolation.".

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings
of the 23rd Annual Symposium on Foundations of Computer Science,
SFCS ’82, pages 160–164, Washington, DC, USA, 1982. IEEE Com-
puter Society.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Pro-
ceedings of the 27th Annual Symposium on Foundations of Computer
Science, SFCS ’86, pages 162–167, Washington, DC, USA, 1986. IEEE
Computer Society.

[ZSB13] Yihua Zhang, Aaron Steele, and Marina Blanton. PICCO: A General-
purpose Compiler for Private Distributed Computation. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communica-
tions Security, CCS ’13, pages 813–826, New York, NY, USA, 2013.
ACM.

68

Non-exclusive licence to reproduce thesis and make thesis public

I, Tiina Turban, (date of birth: 08.01.1990),

1. herewith grant the University of Tartu a free permit (non-exclusive licence)
to:

1.1. reproduce, for the purpose of preservation and making available to the
public, including for addition to the DSpace digital archives until expiry
of the term of validity of the copyright, and

1.2. make available to the public via the web environment of the University
of Tartu, including via the DSpace digital archives until expiry of the
term of validity of the copyright,

of my thesis

A Secure Multi-Party Computation Protocol Suite
Inspired by Shamir’s Secret Sharing Scheme,

supervised by Dan Bogdanov, Sven Laur and Stig Frede Mjølsnes.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intel-
lectual property rights or rights arising from the Personal Data Protection
Act.

Tartu, 26.05.2014

69

	Introduction
	Motivation
	Contribution of the author
	Outline

	Preliminaries
	Secret sharing
	Secure multi-party computation based on secret sharing
	Sharemind
	The Sharemind secure computing framework
	Protection domain deployment configuration
	SecreC 2

	Other SMC frameworks

	A protection domain kind based on Shamir's secret sharing
	Protection domain setup
	Data types supported by the protection domain kind
	Unsigned integers
	Implementing calculations modulo p
	Signed integers
	Booleans

	Security model

	Basic protocols
	Classification
	Resharing
	Declassification

	Arithmetic protocols
	Addition and subtraction with a public value
	Multiplication with a public value
	Addition and subtraction for two shared values
	Multiplication of two shared values
	Boolean arithmetic

	Comparison operations
	Sub-protocols
	Secret-sharing a random value
	Sharing a random bit
	Conjunction of bits
	Prefix-AND
	Less-than for bitwise secret-shared values
	Bit composition
	Bit decomposition
	Bitwise sharing of a random number
	Least significant bit
	Comparison to half prime for unsigned integers

	Equality
	Equality with a public result
	Equality with bit decomposition
	Equality without bit decomposition

	Less-than
	Less-than with bit decomposition
	Less than without bit decomposition

	Comparison of protection domains
	Complexity
	Practical performance

	Conclusion

