
University of Tartu
Faculty of Mathematics and Computer Science

Institute of Computer Science

Pille Pullonen

Actively Secure Two-Party Computation:
Efficient Beaver Triple Generation

Master’s thesis (30 ETCS)

Supervisors: Sven Laur, Ph.D.
Tuomas Aura, Ph.D.

Instructor: Dan Bogdanov, Ph.D.

Author: . " " May 2013

Supervisor: . " " May 2013

Supervisor: . " " May 2013

Instructor: . " " May 2013

Allowed for defence

Professor: . " " May 2013

Tartu 2013

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Contribution of the author . 4
1.3 Structure of the thesis . 5

2 Preliminaries 6
2.1 Cryptographic primitives . 6

2.1.1 Additive secret sharing . 6
2.1.2 Chinese remainder theorem . 7
2.1.3 Universal composability . 7
2.1.4 Paillier cryptosystem . 7
2.1.5 Elliptic curves . 9
2.1.6 Lifted Elgamal cryptosystem . 10
2.1.7 Zero-knowledge proofs . 12
2.1.8 Dual-mode commitment schemes 13
2.1.9 Message authentication codes 17

2.2 Secure multi-party computation . 19
2.2.1 Overview of SMC techniques . 19
2.2.2 General SMC threat model . 20
2.2.3 Achieving actively secure two-party computation 21

2.3 The Sharemind SMC framework . 21
2.3.1 Application model . 21
2.3.2 Computation primitives . 22
2.3.3 Programming applications . 22

3 Principles of the SPDZ framework 24
3.1 Precomputation model . 24
3.2 Oblivious MAC . 26
3.3 Beaver triples . 27
3.4 Basic protocols . 27
3.5 Initialising actively secure two-party computation 29

3.5.1 Asymmetric setup . 29
3.5.2 Symmetric setup . 30
3.5.3 Shared key setup . 30

4 Asymmetric two-party computation 31
4.1 Protection domain setup . 31
4.2 Publishing shared values . 32

2

4.3 Random share generation . 38
4.4 Beaver triples generation . 41
4.5 Receiving inputs from the input party 45
4.6 Efficiency of the protocols . 48

4.6.1 Computational cost . 49
4.6.2 Communication cost . 50

5 Protocols for Beaver triple generation 52
5.1 Setup for triple generation protocols . 52
5.2 Packing several shares into one generation 54

5.2.1 Packing as base-B numbers . 54
5.2.2 Triple generation with partial base-B packing 56
5.2.3 Packing using the Chinese remainder theorem 59

5.3 Share conversion . 59
5.3.1 Converting binary shares to any modulus 60
5.3.2 Problems with converting the third triple element 60
5.3.3 Triple generation with share conversion 61

5.4 Comparison of proposed triple generation ideas 63

6 Symmetric two-party computation 65
6.1 Protection domain setup . 65
6.2 Publishing shared values . 66
6.3 Receiving inputs from the input party 67
6.4 Publishing a secret to the result party 69
6.5 Precomputation . 69

6.5.1 Random share generation . 70
6.5.2 Beaver triples generation . 71

6.6 Efficiency of the protocols . 72
6.6.1 Computational cost . 72
6.6.2 Communication cost . 73

7 Implementation 75
7.1 Implementation platform . 75
7.2 Secure computation capabilities . 75
7.3 Performance measurements . 76

7.3.1 Online protocols . 76
7.3.2 Precomputation protocols . 78

8 Conclusions 80

Eestikeelne resümee 82

Bibliography 84

3

Chapter 1

Introduction

1.1 Motivation

Information is among the most important resources of the modern world, allowing to
make wiser business choices, estimate future trends or foresee natural catastrophes.
The world wide web makes collecting and also sharing information fast and easy, so
in an honest world everyone could just combine their data and analyse it as they like.
However, as a resource information might mean business secrets or confidential data
that should not be freely published, thus, we need methods to process this information
without losing privacy.

Secure multi-party computation is a cryptographic tool that enables sharing data
for analysis without actually revealing it. For example, consider a chain of food-stores
that is interested in learning how well they do compared to other retailers. It could
use secure computation techniques to collaborate with other stores in the area to get
such aggregated results without leaking their client databases or their behaviours to
their competitors.

Each store can expect the others to help the computation as long as they believe
that other companies are also interested in getting accurate results. However, there
might be a shop that deliberately fiddles with the computations, for example, to trick its
competitors into thinking that others have some very popular products that actually no-
one buys. The competitors are then likely to increase their supply of these goods and,
hence, suffer an economical loss. Passively secure computation can be used in the first
case, whereas active security is needed to ensure that all parties follow the computations
correctly. Actively secure secure computation means that the misbehaving shop could
not affect the computation outcomes with anything other than its inputs.

Secure computation is currently an active research field and has reached the state
where is is efficient enough for practical applications. Sharemind is one of the more
mature secure multi-party computation frameworks that currently offers passive secu-
rity [11, 12]. This thesis uses the principles also combined in the SPDZ framework [26]
to add an actively secure protocol set to Sharemind framework.

1.2 Contribution of the author

The aim of this work is to adapt the SPDZ general actively secure computation frame-
work [26] for the two-party case and focus on optimising the precomputation phase.

4

An important distinction between our work and SPDZ is the usage of additively ho-
momorphic cryptosystem instead of the somewhat-homomorphic cryptosystem for the
precomputation phase. The resulting protocol set is implemented in Sharemind ver-
sion 3 [53].

The author was responsible for working out the details of the proposed protocol
sets, including the share representation, local operations on this representation, and
the precomputation phase. In addition, the share representations required protocols
to communicate with data donors and data analysts. The author also implemented
and benchmarked the proposed asymmetric and symmetric protocol set, as well as the
triple generation protocols as part of the Sharemind framework.

The main outcomes of this thesis are the implementation of the asymmetric and
symmetric protection domains, as well as ideas for generating Beaver triples using
additively homomorphic cryptosystem.

1.3 Structure of the thesis

In the following, Chapter 2 gives an overview of tools used to build following secure
computation protocols. At first, it summarises the necessary cryptographic concepts
and gives specific initialisations of schemes used further in this thesis. Secondly, it
provides a short overview of secure multi-party computation and security related issues.
Finally, it briefly describes the key aspects of Sharemind.

The SPDZ framework is introduced separately in Chapter 3 together with some
insights to how the following work uses ideas from it. This chapter focuses on the key
principles used in SPDZ and gives additional background for the rest of the thesis.

Our protocol set for two-party computation with asymmetric setup is introduced
in Chapter 4. This includes both the necessary protocols and theoretical efficiency
analysis.

Chapter 5 introduces some ideas to generate Beaver triples using Paillier cryptosys-
tem. The main focus is on achieving triple generation for arbitrarily chosen modulus.

The online phase of the symmetric protocol set is described in Chapter 6. This chap-
ter also gives hints about achieving suitable precomputation phase using the Beaver
triple generation ideas from Chapter 5.

Chapter 7 focuses on the implementation details and benchmark results, giving an
overview of the efficiency of our protocols. This helps to summarise and compare the
ideas from the rest of the thesis.

Finally, Chapter 8 concludes this thesis and gives additional directions for further
work.

5

Chapter 2

Preliminaries

This chapter introduces the necessary building blocks and background notions for
the proposed protocols. At first, Section 2.1 introduces the cryptographic tools used
throughout this thesis. Secondly, Section 2.2 gives an introduction to secure multi-party
computation and related problems. Thirdly, Section 2.3 introduces the Sharemind
framework where we set up our proposed protocols.

2.1 Cryptographic primitives

This section introduces different cryptographic notions used for building secure two-
party protocols. We introduce the basic concepts and initialise them with the exact
instantiations used in the following sections.

2.1.1 Additive secret sharing

Secret sharing schemes are methods of distributing data between participants so that
some subsets of the participants are able to restore the initial information using their
shares of the data [52]. A secret sharing scheme is a (t, n)-threshold scheme if the data
is shared among n participants and any subset of t ≤ n or more participants is able to
restore it. A secret sharing scheme is correct if t shares uniquely determine the secret.
In addition, the scheme is private if any set of t − 1 or less shares does not give any
information about the secret.

Additive secret sharing is usually defined in a ring ZN for some integer N > 0. To
share a secret x ∈ ZN , one defines shares x1, . . . , xn where x1 + . . . + xn = x and all
arithmetic is performed in ZN . This defines an (n, n)-threshold scheme, where a secret
is divided to n parts and all of those are needed to restore the secret. Restoring the
secret given all the shares is straightforward and only requires summing the shares.
Each computing participant CP i only receives the value xi for secret x. Moreover,
additive secret sharing is information-theoretically secure, meaning that having access
to less than n shares does not reveal any information about the secret value. Such
share representation also allows us to perform computations on the shares.

In the following, we use a two-party protocol where a secret x ∈ ZN is distributed
to two additive shares where x1 + x2 ≡ x mod N . Shared values will be denoted as
[[x]]N . We omit the modulus if it is clearly inferred from the context.

6

2.1.2 Chinese remainder theorem

The Chinese remainder theorem (CRT) is a number theoretic result that has found
many usages also in cryptography. The CRT states that a set of equations in the form

x ≡ ai mod mi , i ∈ {1, . . . , k}

where all mi are pairwise coprime has a solution to x and it is uniquely fixed modulo
M = m1 · . . . ·mk. In addition, the solution can be found as

x ≡
k∑
i=1

ai · bi ·
M

mi

mod M

where
bi ≡

(M
mi

)−1
mod mi .

CRT is commonly used to reduce computations modulo M to many smaller com-
putations modulo mi and restore the result, or to unify computations for different mi

by computing them modulo M and then dividing back to separate moduli.

2.1.3 Universal composability

The framework of universal composability (UC) was proposed to provide a unified
method for proving that protocols are secure even if executed sequentially or in parallel
with other protocols [16, 47]. Security of a protocol is described in terms of securely
implementing an ideal black-box behaviour of the protocol. An ideal functionality is
described by a trusted third party (TTP), who securely collects all the inputs and then
computes and returns the outputs of the protocol.

A protocol is said to be UC if for every adversary and computational context where
the protocol is executed there exists an ideal world adversary that has the same compu-
tational advantage against the ideal world protocol. A universally composable protocol
keeps its security guarantees in every context, provided that is is used in a black box
manner. Thus, the protocol can receive inputs and give outputs, but all the intermedi-
ate messages are not used after the execution. UC security definitions give very strong
security guarantees, but are, in general, also very restrictive.

Many two-party protocols can not be realized in the universally composable manner
in the plain model, where the only setup assumption is the existence of authenticated
communication [17]. The feasibility of universally composable two-party computation
in the common reference string model (CRS) was shown in [18]. In addition, it is possi-
ble to avoid the assumption for trusted setup and base the protocols on the assumption
of existence of public-key infrastructure like setup where each party has registered a
public key, but no registration authority needs to be fully trusted [2].

2.1.4 Paillier cryptosystem

The Paillier public-key cryptosystem [45] uses an RSA modulus N = pq where the
secret components p and q are large primes of equal bit length. The requirement for
equal bit length ensures that N is co-prime with the Euler totient function φ(N),
namely

gcd(pq, (p− 1)(q − 1)) = 1

7

where gcd is the greatest common divisor. The public key pk is (N, g), where g ∈ Z∗N2

and the private key sk is the Carmichael function of N which can be computed as

λ = lcm(p− 1, q − 1)

where lcm denotes the least common multiple.
For a shorthand, we define the Paillier cryptosystem as a set of algorithms for key

generation, encryption and decryption as (Gen,Enc,Dec). The setup algorithm Gen
is used to generate the keys pk and sk. The encryption function Encpk(m, r), where
m ∈ ZN , requires a randomness r ∈ Z∗N and defines the ciphertext as

c = Encpk(m, r) = gmrN mod N2 ,

where c ∈ Z∗N2 . In addition, the ciphertext space of the Paillier cryptosystem is equal to
Z∗N2 as Paillier showed that encryption is a bijection ZN×Z∗N 7→ Z∗N2 . This means that
for each element c parties can publicly verify if it is a valid ciphertext. The decryption
function

Decsk(c) =
L(cλ mod N2)

L(gλ mod N2)
mod N

uses a helper function

L(x) =
⌊x− 1

N

⌋
.

The Paillier cryptosystem is additively homomorphic, allowing to compute the sum
of the messages under encryption

Encpk(m1 +m2, r1 · r2) = Encpk(m1, r1) · Encpk(m2, r2) .

This property also allows to evaluate the multiplication of an encrypted message and a
plain value k under encryption Encpk(km) = Encpk(m)k. We omit the randomness if its
exact value is not important and in such case it is chosen uniformly during encryption.

Additive homomorphism also allows to re-randomize ciphertexts. Given a valid
encryption c = Encpk(x) and Encpk(0) then ĉ = c · Encpk(0) has the same distribution
as Encpk(x, r), r ← Z∗N and nothing else than x can be learned from ĉ. In addition,
for valid ciphertexts c = Encpk(x) and d = Encpk(y), the combination c · d · Encpk(0)
reveals nothing else than x+ y.

We say that a cryptosystem is (t, ε)-indistinguishable under a chosen plaintext
attack (IND-CPA) if, for two known messages m0 and m1 and any t-time adversary A,
the probability of distinguishing between the encryptions of these messages is

AdvIND−CPA(A) =
∣∣∣Pr[GA0,IND−CPA = 1]− Pr[GA1,IND−CPA = 1]

∣∣∣ ≤ ε .

where

GA0,IND−CPA pk, sk ← Gen
m0,m1 ← A(pk)
return A(Encpk(m0))

GA1,IND−CPA pk, sk ← Gen
m0,m1 ← A(pk)
return A(Encpk(m1)) .

The decisional composite residuosity assumption (DCRA) assumes that it is difficult
to distinguish a random element of Z∗N2 from a random N -th power in Z∗N2 . Let N be a

8

randomised algorithm for generating Paillier moduli. Then N is considered to be (t, ε)-
secure against DCRA if for any t-time adversary A the probability of distinguishing
random elements from random N -th residues is at most

AdvDCRA(A) =
∣∣∣Pr[GA0,DCRA = 1]− Pr[GA1,DCRA = 1]

∣∣∣ ≤ ε .

where

GA0,DCRA N ← N
x← Z∗N2

return A(x,N)

GA1,DCRA N ← N
x← Z∗N2

return A(xN mod N2, N) .

Paillier cryptosystem is indistinguishable under chosen plaintext attacks (IND-
CPA) under DCRA, which implies that the modulus N is hard to factor.

There are several known efficiency improvements to the basic definition of the Pail-
lier cryptosystem, for example [45] and [22]. The decryption can be simplified by
precomputing constant values in function L(x) and using CRT. More precisely, we at
first compute the decryption separately modulo p and q and use CRT to restore the
decryption result modulo N [45].

In addition, we can define g = N + 1 which results in faster encryption function

Encpk(m, r) = (Nm+ 1)rN mod N2 .

This simplification results from the Binomial theorem which gives a general expression

(a+ b)c =
c∑
i=0

(
c

i

)
aibc−i ,

and from the fact that the generator does not need to be randomly chosen [22]. For
our case, we need to compute

(N + 1)m =
c∑
i=0

(
c

i

)
N i = 1 + cN +

(
c

2

)
N2 + · · · .

Encryption is a modular operation, thus, we can discard all the elements that have
high powers of N since they are divisible by N2 and we obtain

Encpk(m, r) = (N + 1)mrN = (Nm+ 1)rN mod N2 .

Furthermore, the encryption function can be computed more efficiently using the
private key and CRT to compute separately modulo p2 and q2. Someone in possession
of the private key might, for example, compute the encryption as a commitment to the
encrypted value or to enable the other party to evaluate a function on the encrypted
inputs.

2.1.5 Elliptic curves

Elliptic curves are plane curves with the general equation

y2 = x3 + ax+ b

9

Figure 2.1: Elliptic curve addition R = P + Q for curves y2 = x3 − 3x + 1 and
y2 = x3 − 3x+ 1 over real numbers.

where a and b are constants that define a specific curve. Cryptography usually only
consider curves where x, y, a, b ∈ F, for some finite field F. In addition, there is a
specific infinity point ∞ and a definition of a group operation so that elliptic curves
form an Abelian group, where ∞ is the identity element. We usually use additive
notation for operations between elliptic curve points which extends to multiplication
of a point and an integer.

Figure 2.1 illustrates two different shapes of elliptic curves over real numbers. The
geometric idea is that to find the sum of two points we must draw a line through
them and find the third place where this line cuts the curve. The sum is this point
mirrored by the x-axis or ∞ if there is no such point. Elliptic curves are much used
in cryptography because their structure makes computing the discrete logarithm hard.
Cryptography uses elliptic curves over finite fields where we can not draw illustrations
as Figure 2.1, but the formulas derived from this planar interpretation still hold.

Elliptic curves are used as a basis for public key cryptosystems to be able to use
shorter keys. For example, in our implementation, we can use 256-bit elliptic curve to
achieve the same security level as 2048-bit Paillier key [3, 33]. To fix a curve, we must
fix the field F, constants a and b, base point (generator) of the elliptic curve and the
order of the base point. There are several standard curves, where the parameters have
been optimized for security and computational efficiency, for example see [43].

We use the elliptic curve P-256 recommended by NIST [43] that is given in the
Weierstrass form. Weierstrass form elliptic curves have a potential side-channel vul-
nerability because the addition of two different points and doubling one point have
different algorithms. This is a serious threat as the point and scalar multiplication in el-
liptic curves is often implemented with an additive analogue of the square-and-multiply
exponentiation algorithm and, therefore, analysing the power trace may leak the scalar
used in the multiplication [15]. However, this risk can be mitigated with a common
method of unifying the computation in these algorithms. We use Crypto++ [20] im-
plementation of elliptic curves that avoids this vulnerability.

2.1.6 Lifted Elgamal cryptosystem

The Elgamal cryptosystem [29] is defined for a cyclic group G with generator g of prime
order q. The setup phase defines the public key as h = gx and private key as x, where
the latter can be chosen randomly. To encrypt a message m ∈ G we compute

E.Ench(m, r) = (gr, hr ·m) ,

10

where r ← Zq. The decryption is defined as

E.Decx(c1, c2) = c2 · c−x1 ,

which is correct as

E.Decx(E.Ench(m, r)) = hr ·m · g−x·r = hr−r ·m = m .

The Elgamal cryptosystem is multiplicatively homomorphic meaning that

E.Ench(m) · E.Ench(n) = E.Ench(m · n) .

The Lifted Elgamal cryptosystem shares the setup phase with the aforementioned
Elgamal cryptosystem, but differs from it as the encrypted message is used as an
exponent rather than a multiplicand. In the following, we will use the Lifted Elgamal
cryptosystem defined over elliptic curves. It is used as part of the commitment scheme
and we do not use the expensive decryption operation. For a shorthand, we denote
Lifted Elgamal cryptosystem as (LE.Gen, LE.Enc, LE.Dec). The encryption function is
defined as

LE.Ench(m, r) = (gr, hr · gm)

and decryption requires computing a discrete logarithm on base g, denoted as logg, as
follows

LE.Decx(c1, c2) = logg(c2 · (c−x1)) ,

which is correct as
LE.Decx(LE.Ench(m)) = logg(g

m) = m .

The Lifted Elgamal cryptosystem is additively homomorphic, as

LE.Ench(m) · LE.Ench(n) = LE.Ench(m+ n) .

More precisely, homomorphism is correct because

LE.Ench(m, rm) · LE.Ench(n, rn) = (grm · grn , hrm · gm · hrn · gn)

= (grm+rn , hrm+rn · gm+n) = LE.Ench(m+ n) .

We can also blind the ciphertext with LE.Ench(0) and having LE.Ench(m), LE.Ench(n)
and LE.Ench(0) only allows us to learn LE.Ench(m+ n).

Elgamal and Lifted Elgamal cryptosystems are IND-CPA secure under the Deci-
sional Diffie-Hellman assumption (DDH). We say that a group G with generator g of
order q is a (t, ε)-secure DDH-group if for any t-time adversary A the advantage

AdvDDH(A) =
∣∣∣Pr[GA0,DDH = 1]− Pr[GA1,DDH = 1]

∣∣∣ ≤ ε .

where

GA0,DDH[
x, y ← Zq
return A(g, gx, gy, gxy)

GA1,DDH[
x, y, z ← Zq
return A(g, gx, gy, gz) .

11

2.1.7 Zero-knowledge proofs

Zero-knowledge proofs are interactive proofs for the correctness of a statement, whereas
the proofs should not reveal any additional information. Zero-knowledge proofs have
three important properties: completeness, soundness and zero-knowledge. Complete-
ness means that in case of an honest verifier and prover the verifier accepts the proof.
Soundness, on the other hand, gives the guarantee that a malicious prover can not
make the verifier accept a faulty statement. Zero-knowledge property ensures that in
case of an honest prover and a correct statement, the verifier learns nothing aside from
the proof outcome.

We need a zero-knowledge protocol to prove that we have three ciphertexts of
elements x1, x2, x3 in multiplicative relation x3 = x1 · x2 without revealing these
elements, but assuming that we have a valid public key pk. This proof is defined in
Algorithm 1 and is built from a conditional disclosure of secrets protocol based on
[40]. The encryption scheme defines the randomness space R and the space of suitable
messages M. The space of secrets S of the conditional disclosure of secrets protocol
serves as a randomness to check, if the prover received the correct message.

We use a randomised encoding function

Encode(s, r) = s+ 2` · r

for `-bit secrets s and a randomness r ← ZbN/2`c. Therefore, the randomness space
R1 is defined by the encoding function as R1 = ZbN/2`c. The corresponding decoding
function is defined as

Decode(s+ 2` · r) = s+ 2` · r mod 2` = s

meaning that
Decode(Encode(s)) = s .

The latter ensures that the secret can be correctly restored if the queries q1, q2, q3 were
valid.

The encoding is said to be ε-secure if for any secret s and an additive non-zero
subgroup G ⊆M the distribution of Encode(s)+G is statistically ε-close to the uniform
distribution over M. This encoding is 2`−1

p
-secure where p is the smallest factor of

N [39]. The encoding function is used to add noise to hide the secret if the queries are
not in the multiplicative relation.

The general idea of the protocol is that the prover should only be able to correctly
get the secret s′ = s if the initial queries were in the multiplicative relation. This
results from the conditional disclosure of secrets protocol that enables the prover to
only learn the secret if the multiplicative condition is satisfied. Round 3 clearly gives
correct result for multiplicative elements as

s′ = Decode(x3 · e1 + x2 · e2 + Encode(s)− (x1 · e1 + e2) · x2) = Decode(Encode(s)) .

Nothing is leaked to the verifier in the honest case, as the prover only sends encryptions
and the element s′ = s and an honest verifier already knows s. The verifier releases
all used randomness to the prover in round 4 to show that it behaved honestly and
really knows s. This ensures that the verifier can not learn new information from the
provers secret s′. For security, we need a hiding and binding commitment scheme,
secure randomised encoding function, and an IND-CPA secure cryptosystem.

12

Algorithm 1 CdsZkMul - zero-knowledge protocol for multiplicative relation of ci-
phertexts for an additively homomorphic cryptosystem
Setup: Commitment parameters ck,

Prover has a keypair (pk, sk),
V erifier has pk

Data: Prover has x1, x2, x3
Result: True for successful proof of Encpk(x1) · Encpk(x2) = Encpk(x3),

False in case of any failure or abort
1: Round: 1
2: Prover sets q1 = Encpk(x1), q2 = Encpk(x2), q3 = Encpk(x3)
3: Prover sends q = (q1, q2, q3) to V erifier
4: Round: 2
5: V erifier checks that q1, q2, q3 are valid ciphertexts
6: V erifier generates e1, e2 ←M, r1, r2 ← R, r ← R1, s← S
7: V erifier computes a1 = qe11 · Encpk(e2, r1)
8: V erifier computes a2 = qe13 · qe22 · Encpk(Encode(s, r), r2)
9: V erifier sends a = (a1, a2) to Prover

10: Round: 3
11: Prover computes s′ = Decode(Decsk(a2)− Decsk(a1) · x2)
12: Prover computes (c, d) = Comck(s

′)
13: Prover sends commitment c to V erifier
14: Round: 4
15: V erifier sends (s, e1, e2, r1, r2, r) to Prover
16: Round: 5
17: Prover: if a1 6= qe11 · Encpk(e2, r1) return False
18: Prover: if a2 6= qe13 · qe22 · Encpk(Encode(s, r), r2) return False
19: Prover sends decommitment d to V erifier
20: Round: 6
21: V erifier: if Openck(c, d) 6= s return False

22: return True

In the following, we will use this protocol with the Paillier cryptosystem and a
commitment scheme defined in Section 2.1.8. We will obtain two special cases of this
protocol defined in Algorithm 12 and Algorithm 10.

2.1.8 Dual-mode commitment schemes

Commitment schemes allow one participant to commit to a value, but keep it private
from other participants. Afterwards, the participant can open the commitment to
prove that he initially committed to the value that he claims to have committed to.

We define a commitment scheme as the set of protocols, namely setup, commitment
and opening, (Gen,Com,Open). In general, they rely on an additively homomorphic
IND-CPA cryptosystem. More precisely, we will use Lifted Elgamal on elliptic curves
in our initialisation.

The commitment parameters of a binding commitment are

ck = (pk, e)

13

where e = LE.Encpk(1). We use the homomorphic properties of the cryptosystem to
compute the commitment and decommitment to m as

Comck(m) = (c, d)

where commitment is c = em · LE.Ench(0, r) = LE.Encpk(m) and decommitment d =
(m, r). A commitment is opened by releasing all values used to compute c and the
opening function just recalculates the commitment and verifies the correctness as

Openck(c, d) =

{
m, if c = em · LE.Ench(0, r) ∧ c ∈ C
⊥, otherwise

where C is the set of valid ciphertexts.
Commitment schemes have two important properties: hiding and binding. A com-

mitment scheme is (t, ε)-hiding if, for any t-time adversary A, the probability of dis-
tinguishing commitments to two different messages is

Advhiding(A) =
∣∣∣Pr[GA0,hiding = 1]− Pr[GA1,hiding = 1]

∣∣∣ ≤ ε ,

where

GA0,hiding
ck ← Gen
(m0,m1)← A(ck)
(c, d)← Comck(m0)
return A(c)

GA1,hiding
ck ← Gen
(m0,m1)← A(ck)
(c, d)← Comck(m1)
return A(c) .

A commitment scheme is (t, ε)-binding if for any t-time adversary A the probability
of creating a double opening is

Advbinding(A) = Pr[GA0,binding = 1] ≤ ε ,

where

GA0,binding
ck ← Gen
(c, d0, d1)← A(ck)
if Openck(c, d0) 6= ⊥ ∧ Openck(c, d1) 6= ⊥

return Openck(c, d0) 6= Openck(c, d1)
else

return 0 .

We call a commitment perfectly equivocal, if a valid commitment can be efficiently
opened to any message given some trapdoor information. We say that a commitment
scheme is (t, ε)-equivocal, if for any t-time adversary A the advantage of distinguishing
real and equivocal commitments is bounded as

Advequivocal(A) =
∣∣∣Pr[GA0,equivocal = 1]− Pr[GA1,equivocal = 1]

∣∣∣ ≤ ε ,

where

14

GA0,equivocal

ck ← Gen
A(ck)
for as long as A wants
m← A
(c, d)← Comck(m)
A(c, d)

end for
return A(ck)

GA1,equivocal

ck, ek ← FakeGen
A(ck)
for as long as A wants
m← A
c, r ← FakeComck,ek()
d← Equivocationck,ek(d,m, r)
A(c, d)

end for
return A(ck) .

According to the requirements of the aforementioned zero-knowledge proof proto-
cols, we need our commitment to be an equivocal and binding dual-mode commit-
ment [40]. We need computationally indistinguishable setup phases that yield either
statistically binding or perfectly equivocal commitment scheme to fulfil the require-
ments of the dual-mode commitment.

The previously described commitment scheme allows us to define a suitable equiv-
ocal setup. In addition, the ideal setup and defined algorithms (Gen,Com,Open) yield
a computationally hiding and unconditionally binding commitment as proved in The-
orem 2.1.1. The security proofs in this section give guarantees up to a constant factor
in terms of the running time.

Theorem 2.1.1. The commitment scheme in algorithms (Gen,Com,Open) yields a
(t, ε)-hiding and unconditionally binding commitment given a (t, ε)-IND-CPA secure
cryptosystem.

Proof Sketch. According to the commitment algorithm, the commitment to message
m is c = Encpk(m). Hence, the hiding property of the commitment scheme directly
follows from the definition of IND-CPA security of the cryptosystem.

Similarly, the binding property follows from the fact that the public key pk defines
a valid secret key and, thus, it is theoretically possible to decrypt the commitment,
whereas the decryption always succeeds and yields m.

We can use an altered setup so that the commitment key ck = (h, e) and equivoca-
tion key ek are fixed according to FakeGen to obtain a perfectly equivocal commitment.
FakeGen defines ck = (h, LE.Ench(0, r∗)) and ek = r∗. Equivocal commitment is com-
puted as

FakeComck = (c, r′)

where r′ is the trapdoor for equivocation and c = LE.Ench(0, r
′). Such a commitment

and opened to any chosen message m by

Equivocationck,r∗(m, c, r
′) = (m, r′ − r∗ ·m) .

The result can be verified using Open as defined previously. The correctness of this
equivocal setup is shown in Theorem 2.1.2.

Theorem 2.1.2. Algorithms (FakeGen,FakeCom,Equivocation,Open) yield a perfectly
equivocal commitment of a random message given a (t, ε)-IND-CPA-secure Lifted El-
gamal cryptosystem.

15

Proof. According to the definition of Com, any commitment would be c = LE.Ench(0)
and knowing r∗ it can be opened to any message m. If we initially computed the
commitment as FakeComck and obtained

c = LE.Ench(0, r
′) = (gr

′
, hr

′
) ,

then we can easily compute the decommitment to any m as r = r′ − r∗ ·m as defined
by Equivocation. This is accepted by Open because

em · LE.Ench(0, r) = LE.Ench(0, r∗)
m · LE.Ench(0, r) = LE.Ench(0, r∗ ·m+ r)

= LE.Ench(0, r∗ ·m+ r′ − r∗ ·m) = LE.Ench(0, r
′) = c .

Secondly, we need that the distributions of (c, d) ← Comck(m) and (c∗, d∗) where
c∗ ← FakeComck and d∗ ← Equivocationck,r∗(m) coincide. The distributions of c and
c∗ coincide because they are both random encryptions of zero. If we compute the
commitment according to Comck with setup from Gen, we obtain

c = em · LE.Ench(0, r) = ((gr∗)m, (hr∗g0)m) · (gr, hrg0)
= (gr∗·m+r, hr∗·m+rg0) = (gr∗·m+r, hr∗·m+r) = (gr

′
, hr

′
)

= LE.Ench(0, r
′) .

In addition, fixing a message m and having a commitment c uniquely fixes the
only possible decommitment d = (m, r) as the value r is uniquely fixed. Thus, if the
distributions of commitments c and c∗ coincide then so do the joint distributions of
(c, d) and (c∗, d∗).

Thus, we have a perfectly equivocal commitment.

Theorem 2.1.3. The setups for binding (Gen) and equivocal (FakeGen) commitment
schemes are (t, ε)-indistinguishable for parties who only see the commitment parameters
ck = (pk, e), given a (t, ε)-IND-CPA secure cryptosystem.

Proof Sketch. Assume that there is an adversary A who can distinguish between these
two setup phases. This means that A can differentiate between (pk, LE.Ench(0)) and
(h, LE.Ench(1)). Hence, we can build an adversary B for the IND-CPA security of
the cryptosystem. At first B sends the messages m0 = 0 and m1 = 1 and receives
the ciphertext LE.Ench(mb). B then forwards the message (h, LE.Ench(mb)) to A and
outputs the result as A. Hence, B breaks the IND-CPA security exactly when A
successfully distinguishes the setups and the success of t-time adversary A is bounded
by ε. The running time of B needs only to be constant time longer than A to forward
the messages.

Corollary 2.1.4. According to Theorems 2.1.2 and 2.1.3 commitment setups are (t, ε)-
indistinguishable even if the adversary A sees pairs of correct commitments (c, d) or
fake commitments (c∗, d∗).

For practical purposes we need a protocol to implement the setup phase. It can be
combined from the Diffie-Hellman key exchange [28], homomorphic properties of Lifted
Elgamal cryptosystem and Schnorr Σ-protocols [51]. It is important that the setup
should yield perfectly binding commitment in case computing parties execute it, but
there also has to exist a simulator who can achieve equivocal setup. Full specification
of this protocol is out of the scope of this thesis.

16

2.1.9 Message authentication codes

A message authentication code (MAC) is an extra piece of information about a message
that enables to detect modifications to the initial message. MACs are often described
as keyed hash functions that output a tag from a message and a secret key. A MAC
is secure, if an adversary can not substitute messages or generate valid message and
tag pairs. A substitution attack means changing message and tag pair (x, z) with
a different pair (x, z) where z is a valid tag for x. An impersonation attack means
generating a valid pair (x, z) without seeing any authentication pairs before.

We define a MAC for secret-shared elements as follows. We have a key k and a
secret [[x]], where x = x1 + x2 and x1, x2 are the additive shares. We define z = k · x
as the authentication code for x and keep it as shares z1,x, z2,x, hence

z1,x + z2,x = k · (x1 + x2) .

Verifying the code is trivial for anyone in possession of the secret key k. The key should
be chosen from the same algebraic structure as used for the secret sharing.

Keeping MAC in shares allows us think of it as z2,x = k · (x1 + x2) − z1,x where
z2,x is the tag for secret x and z1,x is part of the secret key which becomes (k, z1,x).
Hence, the view of CP2 is like having tags for unknown messages x where all these
pairs share the sub-key k, but differ by the second part of the key. Such construction
was introduced by Rabin and Ben-Or as Information Checking or Check Vectors for
verifiable secret sharing [49].

Our attack scenario results from the opening of the shares where CP2 might receive
x1 and therefore learn x before sending x2 and z2 to CP1. Hence, we need that CP2

must not be able to come up with x̂2 and ẑ2 such that CP1 would accept the MAC.
This is a special substitution attack, because the attacker only gets to see one message
and tag pair before the attack, however it is sufficient as the second part of the key is
always different and the the attacker can not see tags for more messages of the same
key. We can more precisely define it as a security game for [[x]]N in ring R as GAMAC .
We say that a MAC is statistically ε-secure, if for any adversary A the probability of
winning in GAMAC is bounded by ε:

Pr[GAMAC = 1] ≤ ε

where

GAMAC

k ← R
for as long as A wants
x← A
z1, x2 ← R
z2 = k · x− z1
A(z2, x− x2, x2)

end for
x← A
z1, x2 ← R
z2 = k · x− z1
x1 = x− x2
ẑ2, x̂2 ← A(z2, x1, x2)
return ẑ2 == (x̂2 + x1) · k − z1 ∧ x2 6= x̂2 .

17

Theorem 2.1.5. The adversaries success in GAMAC for a finite field Fpn is bounded by
1
pn
.

Proof Sketch. First, the views of the adversary A in GAMAC and G
′A
MAC are indistin-

guishable and the advantage is the same, where

G
′A
MAC

for as long as A wants
x← A
z2, x2 ← Fpn
A(z2, x− x2, x2)

end for
x← A
z2, x2 ← Fpn
x1 = x− x2
ẑ2, x̂2 ← A(z2, x1, x2)
k ← Fpn
z1 = k · x− z2
return ẑ2 == (x̂2 + x1) · k − z1 ∧ x2 6= x̂2

The values of z2 in GAMAC are randomly uniform, because z1 is chosen uniformly
and, therefore, kx − z1 mod p is also uniformly random element of Fpn . In addition,
the values that adversary sees do not depend on the key k, so, it can be chosen later.

Clearly, the advantage in G′AMAC is the same as the possibility of coming up with a
pair ẑ2, x̂2 such that ẑ2 == (x̂2 + x1) · k − z1. After A picks ẑ2, x̂2 there is exactly one

k∗ = (z1 + ẑ2) · (x̂2 + x1)
−1 ,

such that ẑ2 == (x̂2 + x1) · k∗ − z1. To conclude, the possibility of picking k such
that the verification succeeds is 1

pn
because Fpn has pn different elements and only one

uniquely fixed k∗.

Our message space M may have a composite order and, therefore, this is not as
secure MAC as it would be in case of finite fields. However, we will have R = ZN ,
where N = pq is the Paillier modulus and both of its factors are large and the security
is the same as it would be for either of the prime factors.

Theorem 2.1.6. The success of adversary A in GAMAC with a Paillier modulus N that
defines R = ZN , where N = pq, p and q are primes, and p < q is bounded by 1

p
.

Proof Sketch. Assume that there is an adversary A against GAMAC for some modulus
N = pq who is very successful. Then, there exists an adversary B in GMAC for modulus
p, who can use this A to win in its game. Adversary B has a fixed modulus p, picks a
prime q = N/p and uses the adversary A for modulus N . For every x that A picks B
forwards it to the challenger and gives the result pack to A. It behaves similarly with
the final challenge. According to the Chinese remainder theorem, if A gives a correct
result modulo N then it also holds modulo p and B wins it its game exactly when A
is successful. The runtime of B is only a constant factor longer than A. However,
the maximal success of B is limited by Theorem 2.1.5 as Zp is a finite field and, thus,
the maximal success of A is also 1

p
. From this we know that for any Paillier modulus

N = pq, the maximal success is 1
p
where p < q.

18

This MAC also has homomorphic properties making it possible to compute the new
MAC and new key for the sum of two messages given the tags of the initial messages.

2.2 Secure multi-party computation

Secure multi-party computation (SMC) is a mechanism that allows several participants
to evaluate a function without revealing their inputs. A classical SMC problem known
as the Millionaires’ problem was proposed by Yao [56]. There are two millionaires
who wish to know who has more money without revealing their wealth to the other
millionaire.

2.2.1 Overview of SMC techniques

Garbled circuits

Together with the Millionaires’ problem Yao proposed a solution for securely evaluating
boolean circuits [56]. This approach is known as garbled circuit evaluation and has
developed a lot since it was first proposed. Garbled circuits are commonly used for
two-party computations in the passive model, but this approach can be extended to
more parties [5, 55].

The general idea of garbled circuits is that the original circuit of a function is trans-
formed so that the wires only contain random bitstrings. Each gate is encoded so that
its output bitstring can be computed from the inputs and only the random bitstrings of
output gates can be mapped back to actual results. This way the evaluation computes
the function, but does not leak information about the values on separate wires. The
main drawback of the garbled circuit technique are inefficient evaluation and inability
to reuse the circuit. However, they have been used in SMC frameworks [42, 35].

Secret sharing

Secret sharing was introduced by Shamir [52] and Blakley [8]. Since then Shamir’s
scheme has provided a basis for different verifiable secret sharing [30, 46, 49], SMC
and threshold encryption ideas [31]. SMC frameworks can be obtained from the secret
sharing schemes based on the homomorphic properties of the schemes and by defining
protocols for operations not directly supported by the homomorphism.

This thesis and the Sharemind framework are based on additive secret sharing as
introduced in Section 2.1.1. Share computation is mainly aimed at securely evaluating
arithmetic circuits. For many use-cases arithmetic circuits are more efficient than
boolean circuits and, therefore, share computation is likely to be more efficient than
garbled circuits.

Homomorphic encryption

Homomorphic encryption is especially useful for building secure client-server model
applications, but it can be extended to more general settings. For example, the a sends
encrypted inputs to a server who then computes the desired function on the ciphertexts.

Currently we know of several additively homomorphic cryptosystems, such as Pail-
lier or Lifted Elgamal, or multiplicatively homomorphic cryptosystems, for example
Elgamal. We can use them to obtain frameworks where one side can compute some

19

operations locally, but others require collaboration. These difficulties can be overcome
with fully homomorphic cryptosystems where both multiplication and addition can be
performed locally [32]. However, at current state, fully homomorphic encryption is too
inefficient for practical SMC frameworks.

The main limitation of SMC frameworks based on homomorphic cryptosystems is
the inability to use common data types. The cryptosystem defines a modulus and all
the arithmetic is with respect to these moduli. However, to achieve reasonable security,
we commonly need moduli that are thousands of bits long. We use some of the ideas
from this setup in the precomputation phase of our protocol sets and, therefore, we
also suffer from this restriction on our modulus.

2.2.2 General SMC threat model

An important privacy goal of SMC is that all inputs and outputs should remain pri-
vate, unless specifically declassified. However, we can not avoid that the output of a
function may leak information about the inputs. Furthermore, we often require that
the correctness of the outputs is guaranteed or at least verifiable.

The passive or honest-but-curious security model defines an adversary who always
follows the protocol specification, but may try to extract additional information from its
view of the protocol. An active or malicious security model proposes no restrictions to
the behaviour of the adversary whereas the security aim is to catch the adversary with
overwhelming probability. Consequently, the adversary can control all aspects of the
corrupted parties and communication channels. Covert security model is somewhere
in between the previous two, as the adversary can behave maliciously and must be
caught with certain arbitrarily fixed probability. However, there is a bigger risk of
leaking secrets than when achieving security against an active adversary.

In addition, adversarial behaviour can either be static, adaptive, or mobile. A static
adversary picks the set of corrupted parties in the beginning of the protocol and is
unable to change it later. An adaptive adversary can increase the set of corrupted
parties over time. Finally, a mobile adversary can adaptively corrupt and release
parties, thus varying the set of corrupted parties during the protocol execution.

Although we mostly concentrate on the computing parties, it is possible that the
adversary is not any of the computing nodes, but, for example, someone in the network.
Such adversary can eavesdrop or modify the network and disrupt the communication.
We can use classical techniques to secure the channels against eavesdropping or modi-
fication, but we can not solve different denial of service attacks on the network.

A commonly used threshold limitation of SMC is that achieving unconditional secu-
rity against a passive adversary is only possible if less than n

2
parties of n are corrupted

or correspondingly n
3
for active adversary [19, 6]. These results are special cases of

more general result with adversary structures that allow for stronger results [36, 37].
An adversary structure consists of sets of parties where the adversary is allowed to
corrupt any of these sets. Let Q(2) (Q(3)) be the conditions that no two (three) of these
sets cover the whole set of parties. Every function can then be unconditionally securely
computed by an active adaptive adversary if it is in Q(3). Analogous result holds for
adaptive passive adversary for Q(2).

20

2.2.3 Achieving actively secure two-party computation

The active security model allows the adversary to behave maliciously and do anything
it likes, for example, send incorrect messages. Hence, we need to ensure the correctness
of computations and the privacy of the inputs. In addition, we also require universal
composability to use the basic protocols as building blocks for more general functions.
However, we restrict our adversary so that only one of the computing parties can be
statically compromised and the two computing parties can not collude. The properties
of the additive secret sharing scheme clearly define that the two computing parties can
not collude and, hence, the adversary can not corrupt both of the computing parties.

We take the same approach as SPDZ [26] to ensure the correctness of computation
results, where we only verify the correctness when we publish a result and not dur-
ing the computation. Here we rely of the security properties of the used verification
mechanisms. In addition, we assume that the setup of the protection domain has been
securely fixed and other protocols must be secure in the shared setup model.

In general, we require universal composability, but for brevity we do not give full
proofs for this. In the following, security means both privacy of the inputs and the
correctness of the outputs. The security is achieved using protection mechanisms on
the shares. All protocols with only local computation trivially protect privacy, but we
need to ensure privacy in collaborative protocols.

In the following, we prove security of the protocols in the stand-alone model with
shared setup so that it also implies security in sequential compositions. For some
protocols, we only show the simulatability of the communication so that the adversary
can not distinguish between simulated and real protocol run.

We actually assume that there are three conditions that a protocol needs to fulfil
to achieve security. Firstly, the communication of the protocol should be simulatable.
Secondly, the parties can notice if others cheat. Thirdly, after the protocol, the parties
are convinced about the consistency of the share. However, proving that these are
sufficient, is out of the scope of this thesis.

2.3 The Sharemind SMC framework

Sharemind is an SMC framework [11, 12, 9] with three main goals: (1) it must be
usable for securely processing confidential data, (2) it must be efficient enough for
practical applications, and (3) it must be usable by non-cryptographers. This thesis
is based on version 3 of the Sharemind framework where we can easily define new
secure computation schemes in addition to the traditional one with three miners and
a passive security guarantee.

2.3.1 Application model

Sharemind is designed as a general tool for SMC and privacy preserving data mining.
The model has three different kinds of parties: (1) computing parties, (2) input parties,
and (3) result parties. One participant can belong to all of these classes.

Input parties use secret sharing to distribute their inputs between the computing
parties and are denoted as IP i. Input parties correspond to the data donors or owners
of the data and can often be the same as the result parties. Computing parties, a.k.a
miners, perform computations on the shared data following the protocols specific to

21

the sharing method. Computing party will be denoted as CP i and can be thought of
as a dedicated server, we denote the set of computing parties by CP . Finally, result
parties map to data analysts who initiate the queries and computations and learn the
final public outcomes. They will be denoted as RP i. Result parties get to aggregate
the data from the input parties without actual access to confidential inputs.

The number of input and result parties is not limited, but the number of computing
parties is often defined by the computation protocols. For example, classical Share-
mind protocols use three computing parties, but this thesis focuses on the case with
two miners.

The important trust requirements are that the input parties must believe that the
computing miners do not collude and the result parties must believe that the computing
parties give correct results. The latter can be ensured at a protection domain level as
long as the miners do not collude. In addition, the miners should either believe or
check the consistency of inputs. However, in any case we can not avoid the attack
where input party decides to classify false information.

2.3.2 Computation primitives

In general, a query from the result party means that the computing parties must
execute some algorithm to compute the result. These algorithms are collections of op-
erations such as addition or multiplication. Each of these operations in turn correspond
to a secure computation protocol. The computing parties execute the corresponding
protocols in order to securely evaluate the query.

A protection domain kind (PDK) is a set of algorithms that define the data rep-
resentation and computation protocols. Different protection domain kinds can define
different elementary operations. For example, some may support division, but others
do not have to. A protection domain (PD) is a concrete initialisation of a protection
domain kind. A protection domain is defined by the algorithms from the corresponding
protection domain kind and its configuration, for example, the keys of the participants.
In addition, a protection domain also consists of the protected data. Common Share-
mind PDK is based on additive secret sharing among three miners and is secure in the
passive adversary model, where a PD is fixed by the computing nodes.

All elementary protocols of the PDK must be reusable and composable with each
other to achieve provably secure query evaluation. It has been shown that following
simple rules when designing protocols for elementary operations yields a provably secure
composition of protocols for the traditional three miner PDK [9]. In general we require
universal composability of the computation protocols.

2.3.3 Programming applications

Sharemind 3 uses the SecreC 2 programming language to specify the query algo-
rithms. SecreC is a Sharemind specific C-like language designed to be privacy-
preserving and easy to use. SecreC is strongly typed whereas the type of the private
variables includes the PD. In fact, all public values can be seen as belonging to some
public PD and also including this in their type. The programmer does not need to be
aware of the underlying PDK protocols for operations on the private data and can call
them as any predefined functionality.

SecreC can be used for different protection domain kinds and for writing code that

22

is not specific to any fixed PDK [10]. The domain-polymorphic code clearly only works
if the PDK defines all the necessary protocols. Polymorphism means that integrating
new PDKs to applications is simple and one can easily test their application against
several PDs or develop libraries independently of the PDK. In addition, it is possible
to implement a general function and then specify a special version of it for some PDK
where, for example, the required functionality can be achieved more efficiently than in
the generic code.

Algorithm 2 Example of SecreC

1 kind add i t ive2pa ;
2 kind additive2paSym ;
3 domain pd_a2a add i t ive2pa ;
4 domain pd_a2a_sym additive2paSym ;
5

6 template <domain D>
7 D uint32 sum (D uint32 [[1]] a r r) {
8 D uint32 out = 0 ;
9 for (uint64 i = 0 ; i < s ize (a r r) ; i++){

10 out = out + ar r [i] ;
11 }
12 return out ;
13 }
14

15 void main () {
16 uint64 n = 10 ;
17 pd_a2a uint32 [[1]] a r r1 (n) = 2 ;
18 pd_a2a uint32 s1 = sum(arr1) ;
19 assert (declassi fy (s1) == (20 : : uint32)) ;
20

21 pd_a2a_sym uint32 [[1]] a r r2 (n) = 3 ;
22 pd_a2a_sym uint32 s2 = sum(arr2) ;
23 assert (declassi fy (s2) == (30 : : uint32)) ;
24

25 return ;
26 }

Algorithm 2 gives an example of SecreC code that uses two different PDK where
the domain fixes the setup of given PD. The main function defines one dimensional
matrix (vector) of length n with secret shared elements equal to either 2 or 3 and
computes the sum of the vector elements for both of these PD. The function sum is
defined independently of the used PDK and can be used as long as the PDK defines
type uint32 and an addition operation. Finally the main function publishes the result
and verifies that it has the value that was expected.

23

Chapter 3

Principles of the SPDZ framework

This chapter introduces the main aspects of SPDZ (pronounced Speedz) that is an
actively secure SMC framework [26] that also has a covertly secure version [23]. An
important characteristic of SPDZ is the usage of precomputations, which separate the
protocols to two parts as also used in [24, 21, 25, 7, 44]. Firstly, the precomputation
phase is independent of the secret information and produces some random shares.
Secondly, the online phase uses the secrets and precomputation results to evaluate
necessary functions.

The SPDZ framework utilises three important tools: (1) Oblivious Message Au-
thentication Codes, (2) Beaver triples, and (3) vectorized homomorphic encryption.
The first two are used to ensure security against an active adversary and the second
as precomputation for multiplication. These two have been previously used together
for SMC in BDOZ [7]. However, SPDZ adds an important idea that MAC is used
to authenticate the shared secret as a whole and not for authenticating independent
shares. Thirdly, vectorised somewhat-homomorphic encryption is used to generate
Beaver triples in a communication-efficient way and is a SPDZ-specific property.

It can be seen that SPDZ is a mixture of different previously existing ideas. We
actually omit the usage of the somewhat homomorphic encryption, which is the most
specific idea of SPDZ, but we use the idea of authenticating the secret, not the separate
shares. In the following, we, in general, use the name SPDZ to refer to the collection
of these ideas and reference the origins separately as we introduce the concepts. Our
vision on the development of SPDZ is given on Figure 3.1.

3.1 Precomputation model

The precomputation and online phases are essentially independent and can be op-
timized separately, as long as they have consistent share representations. However,
having a separate precomputation phase is meaningful only as long as preprocessing
gives some benefit to the online phase.

Currently, SPDZ precomputes Beaver triples and single random shares. The covertly
secure extension [23] also precomputes squaring pairs analogous to Beaver triples and
shared bits for comparison, bit-decomposition, fixed point and floating point opera-
tions. It is an open question if other operations can be efficiently precomputed. The
precomputation model originates from Beaver [4] and has found wider usage in SMC
after [24].

24

Oblivious MAC, [49]
Rabin and Ben-Or 1989
Verifiable secret sharing
MAC = Information Checking
Information theoretic security

BDOZ, [7]
Bendlin, Damgård, Orlandi

and Zakarias 2011
Semi-homomorphic encryption
MAC authenticates share
Additive secret sharing
Precomputation
Simpler triple verification

Fully homomorphic encryption
Scheme by Brakerski and

Vaikuntanathan 2011 [14]
SIMD by Smart and

Vercauteren 2012 [54]

Damgård and Orlandi 2010, [25]
Additive sharing
Precomputation
Commitments
Triple verification by discarding
Explicit classify

Additive secret sharing

Damgård and Nielsen 2007, [24]
Precomputing triples
Error correction
Verification for (a, b, c) and (a, b̂, ĉ)

Beaver triples, [4]
Beaver 1991
Multiplicative triples
Multiplication algorithm
Classify idea

SPDZ, [26] and [23]
Damgård, Pastro, Smart and Zakarias 2011
Precomputation
Vectorised SHE SIMD in precomputation
Threshold decryption
Public modifier in share
MAC authenticates secret
Additive secret sharing
Statistical security
Active adversaries

Adaptive adversary for online
Static adversary for precomputation

Precomputation,
Additive sharing,
Triple verification,
MAC

MAC

Triples

Classify Precomputation

Precomputation,
Additive sharing,
Triple verification

Somewhat Homomorphic Encryption

Figure 3.1: The development of SPDZ

Although precomputation is used to achieve efficient online computations, it may
mean that the overall cost of the protocols increases. For example, it could be possible
to use an expensive multiplication protocol M to precompute Beaver triples and then
use the triples to do online multiplication in protocol O. In such case, we use computa-
tion time for both M and O, whereas, in theory, only the time of the precomputation
M suffices for multiplication. However, dividing it to two parts allows for more efficient
online phase. Thus, precomputation model allows us to gain online performance but
may not reduce total workload. This model is usable if O is reasonably more efficient

25

than M or if we can do precomputations without actually defining a multiplication
protocol M .

Precomputation is meaningful in situations where the overall system has uneven
workload so it can do precomputations in the background. Precomputations could be
performed when the users are not active or in parallel with online computations. The
latter is reasonable if it does not significantly reduce online performance. For example,
we can consider a data analyst who likes to get fast results during the workday, but
does not use the system outside common working hours. The latter indicating that the
night-time can be easily used for precomputations.

The precomputation model assumes that the online phase always has sufficient
precomputed values to proceed. However, it is not trivial to ensure this in practice.
Therefore, it is important to consider the desired behaviour of online protocols when
they can not retrieve all necessary precomputation products. One possibility is to
signal the precomputing process and then compute the protocol incrementally as the
precomputation results become available. The other case would be to define a separate
slower protocol for the same functionality that does not require precomputations and
use it instead. In addition, depletion of precomputation results can be avoided if the
algorithms to be executed as well as the input sizes are well known beforehand.

The difficulty from dependence on the precomputation protocol speed indicates
that this model is not well designed for all SMC use-cases. For example, the classical
Millionaires’ problem would have the best solution if the millionaires can set up the
framework, insert their input and get the output at once. The alternative with the
precomputation is unsatisfactory, as they may not wish to wait a while to allow the
machine to perform all kinds of precomputations. In conclusion, the precomputation
model is best suited for applications where the data is used for an extended time period.

3.2 Oblivious MAC

Oblivious MAC algorithms resemble threshold cryptosystems in a way that no party
can check the MAC tag independently of others as no party can decrypt alone. Fur-
thermore, the MAC tag value of a secret shared input will be stored as a secret shared
value. For example, a secret value [[x]] might be protected using a MAC, where the tag
is in turn kept in shares as [[z]]. Together, these requirements indicate that the MAC
key k must be a secret value. In addition, the MAC algorithm must have homomorphic
properties to be able to compute the tag for the computation result from the tags of
the inputs. The idea of producing MAC tags to unknown values originates from Rabin
and Ben-Or as Information Checking for verifiable secret sharing [49].

The SPDZ framework uses unconditionally secure MAC to verify the correctness of
shared value instead of the correctness of each share. The idea of checking the shared
value and not each share results in less storage for MAC tags, but also means that we
can not check the validity of the computations before declassifying the value. MAC
key is shared using additive secret sharing together with meta-information so that all
parties can verify the correctness of the key. Each party has a share of the value and a
share of the tag on that value for each secretly shared element. An analogous algorithm
to MAC from Section 2.1.9 is also used by SPDZ. All their arithmetic is in a finite field
Fpk for a prime p and integer k and thus, according to Theorem 2.1.5 the MAC is
secure.

26

The security requirements from Section 2.1.9 apply also to SPDZ when extended
to more than two parties. In addition, SPDZ proposes an efficiency improvement that
either verifies that all the elements in a vector or none of them. The idea is to combine
the MAC tags to reduce network communication when checking the tags. In this case,
we do not exactly learn, which share was faulty, but in practice we only need to learn the
fact that some party might be malicious. Besides, shares could be verified separately
to sort out the false ones.

3.3 Beaver triples

Beaver triples are multiplicative triples 〈a, b, c〉 such that c = a · b proposed to simplify
multiplication on secret shared inputs [4]. The initial idea was to randomize every
input of an arithmetic circuit and evaluate the circuit on these random shared values
to obtain ŷ = f(r1, . . . , rk). Afterwards, the difference δx of the random input ri and
real input xi is computed as δi = xi− ri and made public. The second time the circuit
is evaluated using public differences and initial random inputs to find the difference δy
for the output y = f(x1, . . . , xk). The real output of the circuit is y = ŷ + δy. The
main question is correctly fixing the difference δy.

This idea is used in the following by the Multiplication protocol in Algorithm 3. For
multiplication, the difference is computed as δy = δ1 · r2 + δ2 · r1 + δ1 · δ2, which follows
trivially from the definition y = (r1 + δ1) · (r2 + δ2) as xi = ri + δi and ŷ = r1 · r2.

The idea was proposed for secret sharing schemes that allow local addition and,
actually, the randomization can be avoided during the addition step. However, com-
puting multiplication results requires collaboration and computing the multiplication
of the random inputs. Thus, Beaver triples are actually two random inputs a and b
used to hide the protocol inputs and their multiplication c = a · b used together with
public differences to restore the correct multiplication result.

Beaver triples are currently a common precomputation mechanism for SMC, as they
can be computed before the inputs are known. The triples are used as helper values
in multiplication according to the original proposal as shown in Multiplication protocol.
Beaver triples were originally described for linearly shared secrets, but can easily be
extended to shares with linear protection mechanisms such as the aforementioned MAC
tags.

3.4 Basic protocols

The description of some SPDZ protocols is independent from the secret sharing method
as long as the scheme defines protocols for publishing shares privately to each comput-
ing or result party, generating a random share, and generating random Beaver triples.
There are three main protocols: (1) classifying the secret input, (2) opening the secret,
and (3) multiplication of shared values.

Classifying and multiplication both require protocols to publish shares, which are
dependant on the share representation. In general, we require three versions of the
Publish protocol: (1) to declassify shares to all computing parties at the same time,
(2) to publish to all computing parties separately, and (3) to declassify to non-computing
parties. The declassification protocols are not specified here as they depend on the share

27

description. However, the general idea is that a party receives information about the
secret from others and verifies its correctness.

We assume that the share representation enables a local addition operation, mean-
ing that to obtain [[x]] + [[y]] all computing parties CP only need to compute on their
own shares. In addition, this implies local operations for subtraction and multipli-
cation with a public value. The multiplication Algorithm 3 assumes the existence of
precomputed and verified Beaver triples and is directly based on Beaver’s ideas [4].
It is derived from triples and local computations together with publishing a value,
combining those to obtain [[xy]] from [[x]] and [[y]].

Algorithm 3 Multiplying two secret values (Multiplication)
Data: Shared secrets [[x]] and [[y]]
Result: Shared result [[w]], where w = x · y
1: CP collaboratively choose a triple [[a]], [[b]], [[c]], where c = a · b
2: CP compute [[e]] = [[x]] − [[a]] and [[d]] = [[y]] − [[b]]
3: CP collaboratively open [[e]] and [[d]] to all CP
4: CP compute [[w]] = [[c]] + e · [[b]] + d · [[a]] + e · d
5: return [[w]]

The classifying protocol in Algorithm 4 enables input and computing parties to
share their secret value among all computing parties. This is a straightforward ex-
tension of the circuit randomization idea from Beaver [4]. It assumes the existence of
precomputation that produces random shared values to all parties.

Algorithm 4 Classifying a private input Classify-IP i
Data: Input party IP i has a secret x
Result: Computing parties CP have [[x]]

1: CP collaboratively choose a precomputed randomness [[r]]
2: CP open [[r]] to IP i
3: IP i computes e = x− r and sends e to CP
4: CP compute [[x]] = [[r]] + e
5: return [[x]]

These online protocols are claimed to be statically secure against an adaptive active
adversary, if we have an ideal precomputation phase. However, only the case of static
adversaries is proved as only this can be achieved by the precomputation protocols [26].
The adversary is allowed to corrupt at most n− 1 parties out of n.

Although the precomputation phase is not defined here due to dependencies on the
share representation, we can still define one important step to verify the correctness
of multiplicative triples. This ensures that the triple really has multiplicative rela-
tion. The triple verification process in Algorithm 5 takes two multiplicative triples
and performs computations analogously to multiplication. For a finite field Zp where
p is prime, the probability of cheating in the verification is 1

p
assuming ideal opening

phase [25].
The behaviour of these protocols somewhat depends on either working with an

honest minority or majority. Everything is the same in case all the protocols succeed—
everyone communicates and all checks in the opening phase succeed. However, the
difference comes when something fails. For example, if a two-party protocol fails then
none of the parties can continue and they also can not restore the secrets. However,

28

Algorithm 5 Verifying the correctness of multiplicative triples
Data: Secret shared random triple [[x]], [[y]], [[w]]
Result: True if w = x · y, False in case any check fails
1: CP collaboratively choose a random value [[r]] and open it to all parties
2: CP collaboratively choose a triple [[a]], [[b]], [[c]], where presumably c = a · b
3: CP compute [[e]] = r · [[x]] − [[a]] and [[d]] = [[y]] − [[b]]
4: CP open [[e]] and [[d]] to all CP
5: CP compute [[h]] = r · [[w]] − [[c]] − e · [[b]] − d · [[a]] − e · d
6: CP open [[h]] to all CP
7: return h == 0

for (t, n)-threshold scheme a set of t honest parties could point out the malicious
participants and continue the computations without them.

3.5 Initialising actively secure two-party computation

Frameworks analogous to SPDZ can be used with two computing parties and could have
three considerably different initial setups. The main difference between them is how the
MAC keys are defined and who knows them. In all cases, we require a homomorphic
MAC. In addition, we would like the secret sharing method and homomorphic MAC
to have the same operations that can be computed locally. Two parties are denoted by
CP1 and CP2.

3.5.1 Asymmetric setup

Asymmetric setup differentiates the computing parties so that one gets the role of a
master node (CP1) who defines the MAC key and the client (CP2) is using the keys
from the master. Using the MAC to either authenticate the secret value or the share
of the other party enables CP1 to easily verify the correctness of the declassification
result. However, CP2 is unable to verify the MAC as it must not know the MAC secret
key. It is up to the master to also define something that CP2 can check.

For example, the master can publish a homomorphic commitment to its input
shares. That way the homomorphic properties of the commitment enable CP2 to
compute valid commitments to all computation results and validate the declassification
result. In addition, the master node must have a way to compute the openings for all
commitments derived during the computation.

The MAC tag for the whole value or the share of CP2 can not be kept by the master
node. MAC algorithms are not designed to protect the privacy of the message, thus,
seeing the whole tag might leak the secret to the master node who also knows the MAC
secret key. In addition, storing it on the side of CP2 might also leak some information
about the secret or the key. Hence, for best security we need to store the tag z in a
secret shared manner as [[z]] and both parties must be able to update their parts of the
tags during computation. We can use the MAC from Section 2.1.9 where the key k is
defined by CP1.

The used commitment has to be binding so that the client node can believe that
it received a correct share in the opening phase. In addition, the hiding property
of the commitment ensures the privacy of secret information in all phases but the

29

declassifying. A complete initialization of a protocol set with asymmetric setup is
described in Chapter 4.

3.5.2 Symmetric setup

A symmetric setup means that both computing parties define similar parameters. A
direct continuation of the previous asymmetric setting would be that both parties CP i
in the symmetric setting define their own MAC keys ki. This would mean that on top
of the secret sharing method we have two MAC tags z(1), z(2) where both parties can
verify one of them during the declassification phase. As in the asymmetric, case we
need a to keep the tags in shares [[z(1)]] and [[z(2)]] to avoid revealing the secrets. For
example, we can use the MAC from Section 2.1.9 where both parties define their own
key.

The main benefit of this setup over the asymmetric one is that the protocol descrip-
tions would also become symmetric. This simplifies the notation and also means that
the parties can do exactly the same workload in parallel. In some sense, this enables
us to gain more efficient time usage. More precisely, it is unlikely to have protocols
where one party has to wait between sending and receiving network message without
having any computations to perform. Furthermore, we can only use the cheap MAC
algorithm and do not have a need for more expensive homomorphic commitments that
we used in the asymmetric case.

Our specification of a protocol set with symmetric setup can be found in Chapter 6.
Symmetric setup with MACs was also used by BDOZ [7]. A setup with using only
commitments to the secrets was introduced in [25].

3.5.3 Shared key setup

The shared key model is a further extension changing the symmetric setup so that
instead of both parties defining a key they share one key [[k]]∗ between them. This
defines a threshold MAC algorithm where all parties must participate in the verification
of the tag. It can give additional efficiency gains as now the parties only have to update
a single tag [[z]] during the computations. However, the sharing [[k]]∗ is special as it has
to define some additional information, allowing parties to verify the correctness of the
restored key and checked tags. The shared key setup is the approach currently used
by the SPDZ framework.

However, there are well-known difficulties with this approach as the knowledge of
the secret key is usually needed to verify the MAC tags. One possible solution is to not
verify any opened results before all computation is done. Afterwards, it is possible to
restore the MAC key and verify all the results at once. However, there are drawbacks
because parties can only notice cheating very late and they must agree on a new key
before next computations. In addition, changing the key means that after verifying the
correctness of opened values, the shares of the outputs or intermediate results from the
checked computations can not be reused.

The first version of SPDZ used the previous approach but they substituted it to a
way to collaboratively check the MAC without revealing the keys [23]. The idea is that
if the secret value is made public and the tag is a linear combination of this public value
and the MAC key then it can be checked by computing on the shares and publishing
only the verification result.

30

Chapter 4

Asymmetric two-party computation

This section introduces our initialisation of an asymmetric two-party secure computa-
tion scheme. It includes the share representation as well as protocols specific to this
representation, including precomputation.

4.1 Protection domain setup

We consider an additive secret sharing scheme in ZN where N is a Paillier modulus
and we have a Paillier keypair (pk, sk) corresponding to this modulus. The party
CP1 knows this keypair, while CP2 only knows the public key pk. In addition, CP2

must be convinced that it is a valid key. CP1 uses Encpk(x) to commit to a value x
and stores the encryption randomness as the decommitment. CP1 can also define a
key k ← ZN for message authentication together with a commitment Encpk(k), which
is also known by CP2. To distinguish a commitment from encrypting, we denote
([k])pk = Encpk(k, rk) which is a fixed value depending on the randomness rk that CP1

chose when initially encrypting it. We use the same notation to represent encryptions
that CP1 has published as commitments during the computation. These encryption
and MAC keys must be usable throughout the life of the shares computed with them.

Each secret value x is is represented by a tuple

[[x]]N = 〈∆, x1, x2, r, ([x1])pk, z1, z2〉

such that x = x1 + x2 + ∆ and z1 + z2 = k · (x1 + x2). The values ∆ and ([x1])pk =
Encpk(x1, r) are public whereas CP i has private values zi and xi. The public modifier
∆ is always 0 for random values and is used to enable fast addition of a share and
public constant. Value r is kept by CP1 to open the commitment to ([x1])pk of share
[[x]]N . This randomness also enables us to write protocols so that actually only CP2

computes ([x1])pk and CP1 recomputes the encryption if needed. This is a reasonable
step because, in reality, CP1 only needs the encryption result during the zero-knowledge
proofs in the precomputation and avoiding computation on ciphertexts enables faster
online computation. We sometimes use labels as z(x)1 and ∆(x) to denote that these part
of the share representation [[x]]. For security, we need to rely on the security of MAC
as showed in Theorem 2.1.6 and security of the commitment shown by Theorem 4.1.1.

Theorem 4.1.1. The commitment scheme based on (t, ε)-IND-CPA secure cryptosys-
tem where the commitment c = Encpk(m, r) is the encryption and opening d = (m, r)

31

is the message together with the encryption randomness is (t, ε)-hiding and uncondi-
tionally binding if the public key of the cryptosystem is publicly verifiable or proved to
be valid using a zero-knowledge proof.

Proof Sketch. The perfect binding property follows from the fact that public key uniquely
fixes the secret key and, hence, it is possible to decrypt the commitment.

The hiding property follows from the definition of the IND-CPA security of a cryp-
tosystem.

Furthermore, addition is a local operation as we can just sum the additive share
elements pairwise and use the homomorphic properties of Paillier cryptosystem. In
addition, the existence of an addition protocol (Addition) also defines a subtraction
protocol (Subtraction) and a protocol for multiplying the shared value with a public
constant (Constant Multiplication). Moreover, adding a public value to the shared secret
(Constant Addition) only requires modifying the value ∆. In a way, public value v can
also be thought of as having a fixed share representation

[[v]]N = 〈∆ = v, v1 = 0, v2 = 0, r = 1, ([v1])pk = 1, z1 = 0, z2 = 0〉 .

Every time when CP2 receives a ciphertext and uses it to compute a response to
CP1, it has to verify that it is valid. For the Paillier cryptosystem, the validity means
that the ciphertext c belongs to Z∗N2 . Checking that c ∈ Z∗N2 is equivalent to checking
that gcd(c,N) = 1. However, it is actually unlikely for either party to send invalid
ciphertexts. If CP2 sends an invalid ciphertext, it means that CP2 can actually factor
N and break the security of this setup, thus, it is as likely as factoring. On the other
hand, if CP1 sends an invalid ciphertext then it deliberately leaks its secret key to CP2.

Computing parties must also be able to communicate with result parties RP i and
input parties IP i. We need to enable the computing parties to receive inputs from
input parties and to make sure that results parties can learn the correct outputs of the
protocol. Input and result parties know the Paillier public key N and have received
the commitment ([k])pk of the MAC key, thus they are in a similar role to CP2.

In the security proofs of this section, the computational security of the protocols
results from the computational security of the Paillier cryptosystem. Therefore, by
choosing suitable keys, we can make the protocols as secure as we require. How-
ever, we specially stress the probability 1

p
that a party can cheat against the MAC

(Theorem 2.1.6), as for some cases, picking securer keys may not mean that also this
probability 1

p
lessens. Therefore, it could be seen as a fixed value rather than a value

that we can make arbitrarily negligible. However, when using the Paillier cryptosystem,
increasing the modulus would also increase the value of p.

We assume the existence of secure authenticated communication channels and ex-
clude eavesdropping and modification of network messages from the security analysis.
In practice, secure network channels are achieved using standard secure channel imple-
mentations like TLS [27].

4.2 Publishing shared values

The secret value may either be made public to CP1, CP2 or RP i and we need to have
different protocols for these cases. We can use a combination of the first two to publish
the value to both computing participants at the same time (Publish-both-CP i).

32

Clearly, sending the corresponding share to other party is a similar step in all of
these protocols. However, the mechanisms for verifying the correctness of the given
share value are different.

Algorithm 6 Publishing a shared value to CP1 (Publish-CP1)
Data: Shared secret [[x]]N
Result: CP1 learns the value x
1: CP2 sends x2 and z2 to CP1

2: CP1 verifies z1 + z2 = k · (x1 + x2)
3: return CP1 outputs x1 + x2 + ∆

It is easy to see that CP1 can perform the verification in Publish-CP1 (Algorithm 6)
because CP1 knows all the plain values in the verification equation. The security of the
MAC algorithm ensures that CP2 is unlikely to pass the verification when submitting
a share or a tag not obtained from correct computations.

As the value ([x1])pk is a commitment to value x1 from CP1 then CP2 can verify
the correctness of received x1 in Publish-CP2 (Algorithm 7) by successfully opening the
commitment. The perfectly binding property of the commitment ensures that CP1 can
only pass the verification with the unique correct share and randomness pair.

Algorithm 7 Publishing a shared value to CP2 (Publish-CP2)
Data: Shared secret [[x]]N
Result: CP2 learns the value x
1: CP1 sends x1 and r to CP2

2: CP2 verifies ([x1])pk = Encpk(x1, r)
3: return CP2 outputs x1 + x2 + ∆

In the following, we give a full proof for the security of Publish-CP i protocol, later
in the thesis we give a more brief overview about the ideal world and simulator for the
security proofs.

Theorem 4.2.1. Algorithms Publish-CP1 and Publish-CP2 for publishing the value to
one computing party are correct. Publish-CP1 is computationally secure against cheating
CP2 with an additional statistical 1

p
-error probability, where p is the smaller prime

factor of N and computationally secure against cheating CP1. Protocol Publish-CP2 is
perfectly secure against a cheating CP1 and computationally secure against a cheating
CP2.

Proof sketch. For correctness, we need that x = x1 + x2 + ∆ or the protocol aborts.
The former is trivially true by the definition of the share representation and, in case
of honest participants, the verification always succeeds. In the following, we show the
security in the stand-alone setting.

We describe the ideal secure execution of this protocol using the model with a
trusted third party (TTP) who always behaves honestly. The ideal functionality of
publishing to CP i is such that the TTP notifies CPj that it is about to declassify x. On
input Continue it sends x and ∆ to CP i and on input Abort it cancels the publishing.
The real setup where the publish protocol is executed is such that the parties have
executed some protocols and received the output x and correction value ∆ and then
CPj sends the declassification values to CP i. However, the previous protocol runs are

33

secure and can be replaced by a TTP, who gives the shares of x to the computing
parties. These two execution models are illustrated on Figure 4.1 for Publish-CP1, the
case for Publish-CP2 is analogous.

REAL :

CP1

x/⊥

T T P
x,∆

CP2

Trusted Setup

x2, z2, ([x1])pk,∆x1, z1, r,∆

x̂2, ẑ2

pk, sk, ck, k pk, ck, ([k])pk
pk, ck, k

IDEAL :

CP1 T T P
x,∆

CP2

Trusted Setup

∆, Declassifying

Continue / Abortx,∆ / ⊥

pk, sk, ck, k pk, ck, ([k])pk
pk, ck, k

Figure 4.1: Ideal and real protocol execution of Publish-CP1

Therefore, for both protocols, we need to show a simulator, such that the output
distributions of the simulated adversary and the CP i of the ideal world coincide with
the outputs of the adversary and CP i in the real world.

Firstly, consider a corrupted CP2 in Publish-CP2. The corresponding simulator at
first receives x and ∆ from TTP if the ideal publishing succeeds and can easily create
suitable values x1, x2, z2, ([x1])pk = Encpk(x1, r), r, where x1 + x2 = x. The simulator
can forward these to the corrupted CP2 as two messages in the real protocol execution.
The outputs clearly coincide as the corrupted CP2 always gets the same x and honest
CP1 has seen the same ∆.

Analogously, the simulator for corrupted CP1 in Publish-CP1 is straightforward. It
receives x and ∆ from TTP and can prepare x1, x2, z2, ([x1])pk = Encpk(x1, r), r, where
x1 + x2 = x. However, it can not fix a correct z1, but it can compute Encpk(z1) =
Encpk(k)x · Encpk(−z2). Therefore, it can simulate the protocol for the equivalent of
CP1, who expects z1 in an encrypted form.

In the following, for publishing to CP i we only consider the case where the other
party CPj is corrupted. We assume that there has been a setup phase beforehand,
where all parties and the simulator learned ([k])pk and N . In addition, CP1 learned the
private key for the Paillier cryptosystem and the TTP also has k. The setup is shared
between protocol runs and is not a part of this protocol execution.

Publishing to CP1. The simulator S at first picks a MAC key kS for itself. It then
generates the share x2, z2, ([x∗1])pk to the adversary A who responds with x̂2, ẑ2. The
simulator either finishes with Abort or Continue where the output Ψ1 of CP1 will be
⊥ in the former and x in the latter case as given by the ideal world TTP. The general
game for this is specified as GA1 (x) and GA2 (x) rewrites this with the specific details of
the simulator.

The corresponding real protocol execution can be seen from GA3 (x) with the exact
details of the honest CP1 and TTP in GA4 (x). It can be seen that the games GA2 (x)

34

GA1 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
∆, x2, z2, c

∗ ← S(pk, ([k])pk)
x̂2, ẑ2 ← A(∆, x2, z2, c

∗)
Ψ2 ← A
b← S(x̂2, ẑ2)
if b = Continue

then Ψ1 = x
else Ψ1 = ⊥

return (Ψ1,Ψ2)

GA2 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
∆← T T P(pk, ck, k)
x2, z2, x

∗
1, kS ← ZN

z1 = kS · (x∗1 + x2)− z2
c∗ ← Encpk(x

∗
1)

x̂2, ẑ2 ← A(∆, x2, z2, c
∗)

Ψ2 ← A
if kS · (x∗1 + x̂2) = z1 + ẑ2

then Ψ1 = x
else Ψ1 = ⊥

return (Ψ1,Ψ2)

Security game 4.2.1: Publishing to CP1 with simulator

and GA4 (x) are almost equivalent, except for the usage of a different key, different
commitments ([x1])pk, ([x∗1])pk and some additional computations in GA4 (x). By IND-
CPA security we know that ([x1])pk and ([x∗1])pk are computationally indistinguishable.
We know that starting A with the same randomness φ2 will always result in the same
output Ψ2.

As the simulator does not know the real key k, it may falsely accept when the real
protocol run rejects the inputs. However, according to the MAC security, the simulator
falsely accepts with probability less than 1

p
which is the same as in the real protocol

run. From the IND-CPA security of the cryptosystem we know that ([k])pk hides k,
therefore using kS instead of k is computationally indistinguishable. However, in the
ideal protocol run we know that CP1 always gets the correct output x, but due to the
possible cheating in the MAC algorithm there is a 1

p
possibility that the real protocol

run finishes with x̂. Therefore, the outputs of the ideal and real world coincide except
with probability 1

p
.

GA3 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
∆, x1, z1, r, x2, z2, c← T T P(x,∆, pk, ck, k)
CP1(∆, x1, z1, r)
x̂2, ẑ2 ← A(∆, x2, z2, c)
Ψ2 ← A
Ψ1 ← CP1(x̂2, ẑ2)
return (Ψ1,Ψ2)

GA4 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
x1, z1 ← ZN , r ← Z∗N
c← Encpk(x1, r)
x2 = x− x1 −∆
z2 = k · x− z1
x̂2, ẑ2 ← A(∆, x2, z2, c)
Ψ2 ← A
if k · (x1 + x̂2) = z1 + ẑ2

then Ψ1 = x
else Ψ1 = ⊥

return (Ψ1,Ψ2)

Security game 4.2.2: Publishing to CP1 in real protocol run

Publishing to CP2. The simulator S picks the shares that CP1 should receive
and sends them to A to simulate the TTP in the real protocol execution. Then
A sends the declassification message x̂1, r̂. The simulator outputs Continue in case
Encpk(x1, r) = Encpk(x̂1, r̂) which is the same check that an honest CP2 would do to
check the commitment. The simulated protocol run can be seen in the game GA5 (x)
and the simulator specifics have been written out in GA6 (x).

35

GA5 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
∆, x1, z1, r ← S(pk, ([k])pk)
x̂1, r̂ ← A(∆, x1, z1, r)
Ψ1 ← A
b← S(x̂1, r̂)
if b = Continue

then Ψ2 = x
else Ψ2 = ⊥

return (Ψ1,Ψ2)

GA6 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
∆← T T P(x,∆)
x1, z1 ← ZN
r ← Z∗N
x̂1, r̂ ← A(∆, x1, z1, r)
Ψ1 ← A
if Encpk(x̂1, r̂) = Encpk(x1, r)

then Ψ2 = x
else Ψ2 = ⊥

return (Ψ1,Ψ2)

Security game 4.2.3: Publishing to CP2 with simulator

An analogous game of the real protocol run with the TTP representing the previous
computations and a real honest CP2 is shown in GA7 (x). Finally, the game GA8 (x) shows
the real execution with the exact workings of TTP and CP2.

GA7 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
x1, z1, r, x2, z2, c← T T P(x,∆)
CP2(∆, x2, z2, c)
x̂1, r̂ ← A(∆, x1, z1, r)
Ψ1 ← A
Ψ2 ← CP2(x̂1, r̂)
return (Ψ1,Ψ2)

GA8 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
x1, z1 ← ZN
r ← Z∗N
c← Encpk(x1, r)
x2 = x− x1 −∆
z2 = k · x− z1
x̂1, r̂ ← A(∆, x1, z1, r)
Ψ1 ← A
if Encpk(x̂1, r̂) = c

then Ψ2 = x
else Ψ2 = ⊥

return (Ψ1,Ψ2)

Security game 4.2.4: Publishing to CP2 in real protocol run

We can see that besides some additional computations, the games and outputs of
GA6 (x) and GA8 (x) coincide and the simulation is perfect. The simulator always accepts
the same cases as the real protocol run because the commitment is perfectly binding.
Therefore, the outputs of the real and ideal world coincide.

There are two special cases when result parties RP i may need to learn the com-
putation outcomes. In one scenario, the computing parties CP i are allowed to also
learn the outcome, whereas in the other case, only the output party RP i can learn the
declassification result.

It is straightforward to satisfy the first case. The computing parties just run the
declassification protocol Publish-both-CP i and they both forward the declassified result
to RP i. The result party only has to verify that both computing parties sent the same
declassified result. Differently from either Publish-CP i, in Publish-CP&RP i, the result
party RP i can not easily check which of the computing parties has tried to cheat, if
the verification does not succeed.

36

Theorem 4.2.2. Publishing values to both computing parties and to result parties
(Publish-CP&RP i) is correct and as secure against corrupted CPj as Publish-CP i and
perfectly secure against a corrupted RP i.

Proof sketch. These properties result from the correctness and security of publishing to
either of the computing parties in Publish-CP i. The fact that the result party verifies
that both computing parties sent the same same result also detects cheating after
finishing the predefined publishing protocols.

It is trivial to simulate the protocol run for a corrupted RP i as the simulator can
just forward the value x from the TTP to RP i.

The second case requires more work on the side of the result party as given in
Publish-RP i (Algorithm 8). The idea is that the result party RP i can verify the com-
mitment similarly to CP2, but it can not verify the MAC tag as it does not know
the secret key k. However, RP i can verify that it has the right share using the proof
of correct share representation similarly to the Singles protocol. The main drawback
of this protocol is that the corresponding zero-knowledge proof protocol, that we in-
stantiate with a version of CdsZkMul protocol (CdsZKTags), can be quite expensive.
However, in real life we would like to avoid heavy computational needs on the side
of the input and result parties in order to make this usable in a variety of different
settings, including, for example, those where the input and result parties are using
mobile devices.

Algorithm 8 Publishing a shared value to RP i (Publish-RP i)
Data: Shared secret [[x]]N
Result: Result party RP i learns the value x
1: CP1 sends ∆, x1 and r to RP i
2: CP2 sends ∆, x2, z2, and ([x1])pk to RP i
3: RP i verifies that CP1 and CP2 sent the same ∆
4: RP i verifies that ([x1])pk = Encpk(x1, r)
5: CP1 proves z1 + z2 = k · (x1 + x2) to RP i using CdsZKTags
6: return RP i computes x = x1 + x2 + ∆

Intuitively, the protocol is secure if neither party can make RP i accept a faulty x.

Theorem 4.2.3. Algorithm Publish-RP i for declassifying shared secrets to result par-
ties is correct. Protocol Publish-RP i is computationally secure against corrupted CP2

with possible 1
p
error probability, where p is the smaller prime factor of N . Protocol

Publish-RP i is perfectly secure against a corrupted CP1. It is also computationally
secure against malicious RP i, assuming a simulatable CdsZKTags protocol.

Proof sketch. The correctness means that in case of honest participants, RP i receives
the result x. It follows trivially from the share description and correctness of the used
ZK proof.

For security in the stand-alone setting, we are interested in the cases where either
of the parties is corrupted alone. We show the simulator construction for these cases.
The ideal model and real world execution scenarios are analogous to those of the
Publish-CP i, except that RP i is supposed to learn the final outcome.

The simulation in both CPj cases begins by using the corresponding simulator from
Publish-CP i where CPj is corrupted. It at first acts on behalf of the previous protocols

37

and gives the shares of a secret x∗ to the corrupted CPj. The CPj has to release
the same values as in Publish-CP i with the additional values ∆ on both sides and
([x1])pk from CP2. The simulator checks the correctness of these by either opening the
commitment ([x1])pk or verifying the tags with respect to its own key as in Publish-CP i.

In addition, the simulator of corrupted CP2 verifies the correctness of ([x1])pk as
an honest RP i would by checking the opening ([x1])pk = Encpk(x1, r). Finally, the
simulator also has to check the validity of ∆, which it can do by storing the same ∆
that the simulator learned from the TTP and forwarded to the corrupted CPj.

For the CdsZKTags part of the corrupted CP1, the simulator can define x2 = −x1
and z2 = −z1. This way the proof has the statement 0 = k · 0, which is correct
independently of the modulus and the key, and the simulator can behave as an honest
RP i who is the verifier in this proof. Hence, we know that CdsZKTags has the correct
inputs and that the proof does not leak z2 and x2, which mean that this special case of
the proof is indistinguishable from the real case for the corrupted CP1. The simulations
of corrupted computing parties give the same output distribution as the real protocol
run, as the corrupted party has the same view and the result party learns either x or
⊥, depending on the computing parties correctly participating in the protocol.

For corrupted RP i, the simulator receives x and ∆ from the TTP and can fix x1,
x2, z2, r, ([x1])pk that it forwards to the result party. In addition, the simulator can
compute Encpk(z1) = Encpk(k)x · Encpk(−z2) for the CdsZKTags. Hence, it can act as a
simulator of the proof because it has all the correct queries ([x1])pk, ([k])pk and ([z1])pk.
The output distributions coincide as the corrupted RP i has the same view and the
output of the computing parties depends on the final decision of RP i.

An interesting aspect is that cheating in CdsZKTags can not help CP1 to make RP i
accept a wrong x. According to our assumptions, the CP i are not allowed to collude
and this proof can only make RPi to accept a faulty value from CP2. However, it can
easily make the publishing protocol fail.

On the downside, as in Publish-CP&RP i the Publish-RP i also doest not allow RP i
to easily verify which of the parties CP i tried to cheat if any of the checks fails. Theo-
retically, it would be possible to achieve by having both parties prove the correctness
of all their previous computations.

4.3 Random share generation

The random share protocol (Singles) must generate a valid share representation of
[[x]]N = 〈∆, x1, x2, r, ([x1])pk, z1, z2〉 for a random x where the participants do not know
the value of x. This is a necessary protocol for sharing the inputs and producing random
multiplicative triples. Both parties choose a random additive share and collaborate to
fix the MAC tag as described in Algorithm 9. In addition, this gives a uniformly
distributed random value [[x]]N as a result as the sum of two uniformly distributed
values is uniform. Furthermore, the value is uniformly distributed even if only one of
the participants generated its share correctly.

Our initialisation of the proof of z1 + z2 = k · (x1 + x2) follows CdsZkMul (Algo-
rithm 1), except for the initial messages, because a part of the query can be computed
from the share by the verifier CP2. However, this actually means that the security of
this protocol does not follow easily from the CdsZkMul. The best possibility would
be to make CP2 to prove that q3 is computed correctly. This way we could ensure the

38

Algorithm 9 Generating a random share (Singles)
Data: No inputs
Result: Shares [[x]]N of random value x
1: Round: 1
2: CP i sets ∆ = 0
3: CP1 generates x1 ← ZN
4: CP1 generates r ← Z∗N
5: CP1 sends ([x1])pk = Encpk(x1, r) to CP2

6: CP2 generates x2, z2 ← ZN
7: CP2 computes c = ([k])x2pk · Encpk(−z2)
8: CP2 sends c to CP1

9: Round: 2
10: CP1 computes z1 = k · x1 + Decsk(c)
11: CP2 verifies that ([x1])pk is a valid ciphertext
12: Verification:
13: CP1 proves the correctness of MAC tags z1 + z2 = k · (x1 + x2) to CP2

14: return [[x]]N

simulatability and, hence, zero-knowledge property of this protocol, but would lose a
lot of efficiency for the additional zero-knowledge proof. For now, we just assume that
CP1 verifies that q3 contains the right plaintext, which leaves a small hole that CP2

might use CP1 as kind of a decryption oracle, to check if it formed the q3 correctly
to contain the multiplication of the plaintexts from q1 and q2. We keep this protocol
in hopes that we can define a simulatable protocol with the same form queries. In
the future we should specify a simulatable version of CdsZKTags. A simple way to add
some additional verification would be that occasionally the parties decide to discard the
random value and open all values used for computing this or proving the correctness.

The idea of CdsZKTags is to ensure to CP2 that CP1 has all the values to accept
this share during the opening phase in Publish-CP1. More precisely, after this proof,
the CP2 knows that the share is correctly formed and that, if CP2 uses it correctly in
the following computations, then CP1 should be able to open all the following results.
Thus, CP2 can avoid malicious CP1 framing CP2 it as a malicious party. An honest
CP1 already has this property because the commitment ([x1])pk is public. This property
is important as the Singles protocol is the basis for input sharing protocol Classify-CP i
which is the first step of all computations. Thus, verifying the correctness of [[x]] in
Singles can be a basis for showing the correctness of all outputs.

Theorem 4.3.1. Algorithm Singles for generating random shares is correct.

Proof. The correctness of ([x1])pk = Encpk(x1, r) is trivial in case of honest CP1. It is
also trivial that x1 + x2 + ∆ = x as the value of x is not predefined. For correctness
we need to show that z1 + z2 = k · (x1 + x2) so that the verification succeeds:

z = z1 + z2 = k · x1 + Decsk(c) + z2 = k · x1 + Decsk(([k])x2pk · ([−z2])pk) + z2

= k · x1 + k · x2 − z2 + z2 = k · x1 + k · x2 = k · (x1 + x2) .

The basic ideal functionality of the Singles protocol would be such that both parties
notify the TTP that they are interested in sharing a random value. Then, the TTP

39

Algorithm 10 CdsZkMul for correctness of MAC tags (CdsZKTags)
Setup: Commitment parameters ck,

Paillier keypair (pk, sk) from the protection domain setup
Data: Shared secret [[w]]N
Result: True for successful proof of z1,w + z2,w = k(w1 + w2), False in case of any
failure
1: Round: 1
2: CP1 computes and sends ([z

(w)
1])pk = Encpk(z

(w)
1) to CP2

3: Round: 2
4: CP2 checks that ([z

(w)
1])pk is a valid ciphertext

5: CP i sets q1 = ([w1])pk, q2 = ([k])pk, q3 = ([z
(w)
1])pk · (([k])w2

pk · Encpk(−z(w)2))−1

6: CP2 generates e1, e2 ←M, r1, r2 ← R, r ← R1, s← S
7: CP2 computes and sends a1 = qe11 · Encpk(e2, r1) to CP1

8: CP2 computes and sends a2 = qe13 · qe22 · Encpk(Encode(s, r), r2) to CP1

9: Round: 3
10: CP1 computes s′ = Decode(Decsk(a2)− Decsk(a1) · k)
11: CP1 computes (c, d) = Comck(s

′) and sends c to CP2

12: Round: 4
13: CP2 sends (s, e1, e2, r1, r2, r, q3) to CP1

14: Round: 5
15: CP1 verifies that Decsk(q3) = k · w1

16: CP1: if a1 6= qe11 · Encpk(e2, r1) return False
17: CP1: if a2 6= qe13 · qe22 · Encpk(Encode(s, r), r2) return False
18: CP1 sends d to CP2

19: Round: 6
20: CP2: if Openck(c, d) 6= s return False

21: return True

would generate the value x and give the share representation back to the computing
parties. However, it is straightforward to see that we can not achieve this, as in our
protocol both parties can choose their own xi. We would like to consider a slightly
different case where the TTP takes xi as inputs from CP i. However, in this case we
can also only fully simulate the case of corrupted CP1 that sends Encpk(x1) in the
real protocol where the simulator could learn x1. However, for corrupted CP2 the only
message c that it sends is independent of the input x2 and, therefore, the corresponding
simulator could not learn x2. For now we show the simulatability of the communication
assuming that xi are private inputs of the protocol. For achieving fully simulatable
protocol we should include the proof that CP2 knows x2 and z2 that it uses to compute
the massage c.

Theorem 4.3.2. The communication in algorithm Singles for generating random shares
is computationally simulatable and the final shared value x is computationally uniformly
distributed in ZN given a computationally IND-CPA secure cryptosystem.

Proof sketch. We show that there exists a non-rewinding simulator for the steps before
the verification phase that manages to compute all the values needed for the verification.
Cheating can be discovered during the verification, if the checks pass then the sharing
is valid. We assume that xi are actually the inputs of this protocol that the honest

40

party would choose uniformly.
If CP1 is corrupted, then the simulator has to simulate the reply c from CP2. By

definition c = Encpk(k)x2 · Encpk(−z2) is independent of x2, therefore the simulator can
simulate this efficiently by picking random values x∗2 and z∗2 and computing c according
to the definition. If the adversary A sends ([x1])pk that is not a valid ciphertext, then
the simulator aborts, otherwise it finished successfully. In the end, the simulation has
all the values x∗2, z∗2 , Encpk(x1) and Encpk(k) that it needs to continue with the zero-
knowledge proof as an honest verifier. In can do continue with the proof as it has all
the values for the queries and because the proof does not leak information about x∗2
and z∗2 , meaning that the proof with these value in indistinguishable from the one with
real x2 and z2 for corrupted CP1.

If CP2 is corrupted, then the simulator must simulate the message Encpk(x1). It
can do this efficiently by publishing an encryption of a random value x∗1 because by the
IND-CPA security of the cryptosystem, this in computationally indistinguishable from
the encryption of the real input. The simulator sends Abort to the ideal functionality,
if the message c from the adversary is not a valid ciphertext. Finally, the simulator
can compute Encpk(z1) = Encpk(k)x

∗
1 · c for the zero-knowledge proof as its initial input

to CdsZKTags. It could continue as a simulator of the proof if the simulator is defined.
Clearly, the result x is uniformly random, if at least one of the computing parties

is honest. An honest party chooses its share uniformly as xi ← ZN and we know that
in a ring the sum x + r is uniformly distributed if x is uniform, independently of the
distribution of r. However, we only achieve computationally uniform because CP2 also
knows ([x1])pk and might choose x2 based on that. However, for a computationally
IND-CPA secure cryptosystem, the probability of x2 depending on x1 is bounded by
the computational indistinguishability.

4.4 Beaver triples generation

Beaver triples [4] are multiplicative triples, so we need [[w]]N = [[xy]]N from [[x]]N and
[[y]]N , where x and y are random values. We can easily find random shares [[x]]N and
[[y]]N with Singles, so the main task of Triples protocol in Algorithm 11 is to correctly
obtain [[w]]N . Random multiplicative triples are necessary to perform multiplication of
the shares (Multiplication).

Verifying the correctness of CP2 requires using another unverified triple and thus,
it can not be used after all runs of this protocol. However, in practice the protocols are
commonly run on vectorised inputs and we could use half of the triples from generation
to verify the other half.

Theorem 4.4.1. Algorithm Triples for generating random triples is correct.

Proof. The correctness of the commitment ([w1])pk is trivial for an honest CP1. For
correctness, we need to show that if both parties are following the protocol, then

41

Algorithm 11 Generating a random multiplicative triple (Triples)
Data: No inputs
Result: [[x]]N , [[y]]N , [[w]]N , where w = x · y
1: CP i generate [[x]]N and [[y]]N with Singles
2: Round: 1
3: CP i sets ∆(w) = 0
4: CP2 generates r, z(w)2 ← ZN
5: CP2 computes w2 = x2 · y2 − r
6: CP2 sends v = ([x1])

y2
pk · ([y1])

x2
pk · Encpk(r) to CP1

7: CP2 sends t = ([k])w2
pk · Encpk(−z(w)2) to CP1

8: Round: 2
9: CP1 computes w1 = x1 · y1 + Decsk(v)

10: CP1 computes z(w)1 = k · w1 + Decsk(t)
11: CP1 generates r(w) ← Z∗N
12: CP1 sends ([w1])pk = Encpk(w1, r

(w)) to CP2

13: Verification: Verify that CP1 is correct
14: CP2 verifies that ([w1])pk is a valid ciphertext
15: CP1 proves w = x · y to CP2 using CdsZKMult
16: CP1 proves z(w)1 + z

(w)
2 = k · (w1 + w2) to CP2 using CdsZKTags

17: Verification: Verify that CP2 is correct
18: CP collaboratively run Triple Verification to learn h
19: CP1: if h 6= 0 return ⊥
20: return [[x]]N , [[y]]N , [[w]]N

w = x · y and z(w) = k · (w1 + w2). Is is straightforward, as

w = w1 + w2 + ∆(w) = x1 · y1 + Decsk(v) + x2 · y2 − r + 0

= x1 · y1 + x1 · y2 + y1 · x2 + r + x2 · y2 − r
= x1 · (y1 + y2) + x2 · (y1 + y2) = (x1 + x2 + 0) · (y1 + y2 + 0) = x · y

z(w) = z
(w)
1 + z

(w)
2 = k · w1 + Decsk(t) + z

(w)
2 = k · w1 + k · w2 − z(w)2 + z

(w)
2

= k · (w1 + w2) .

Analogously to the Singles protocol, the basic ideal functionality should be such that
the parties notify TTP that they want a set of triples and the TTP then gives them
the share. However, in the Singles protocol we are actually more likely to achieve the
case where parties can pick their own inputs xi and the TTP gives the other elements
in the share representation. In the triples protocol the party CP2 can also actually
pick w2 for itself, therefore we also consider this as an input to the triple generation in
the ideal world. Hence, the ideal functionality of the triple generation protocol is such
that the TTP receives x1, x2, y1, y2, w2 and computes w1 such that the multiplicative
relation holds, as well as fixes the tags and commitments. However, for now we can
only show the simulatability of the communication of this protocol.

Theorem 4.4.2. The communication of the Triples protocol for generating random
multiplicative triples is computationally simulatable.

42

Proof sketch. We show that the communication to either side is simulatable. We except
the verification as it is straightforward to see that Triple Verification is simulatable and
we have specially addressed the problems with CdsZKTags and CdsZKMult. However,
we know that if the verification succeeds then the triple has multiplicative relation and
that the shares of the triple elements are correctly formed. We assume that the shares
of the singles and w2 are the inputs to this protocol.

The simulator can use the simulation for protocol Singles from Theorem 4.3.2 for
generating random x and y. In case these protocols should abort, the simulator also
aborts. Otherwise, it continues simulation.

The simulation for a malicious CP1 behaves exactly as an honest CP2 would, except
that it has to pick w∗2 at random. The simulator can simulate v and t efficiently by
picking a random w∗2 and using the values x∗2, y∗2 that it picked for the simulation of the
Singles. It succeeds unless ([w1])pk is an invalid ciphertext. This simulation is perfect as
the sent messages are independent of the input. By definition it has honestly computed
the values needed in the zero-knowledge proofs and can behave as an honest verifier in
the proof, because the proof does not leak its private input w∗2.

We actually assume that the simulator for corrupted CP2 behaves slightly differently
from the previous simulators. Namely, it also modifies the trusted setup, by defining
a simulator of the setup, that picks kS as a MAC key of the simulator and gives
([kS])pk instead of ([k])pk to CP2. Due to the IND-CPA security, this is computationally
indistinguishable from the real setup. However, the limitation is that this simulated
setup has to occur before any protocol runs, because the setup is shared between
protocols. Therefore, all simulated runs for a corrupted CP2 must use the same kS if
they also contain the Triples protocol.

The simulator for a malicious CP2 can compute the only message ([w1])pk that it
has to simulate as c = Encpk(x

∗
1 · y∗1) · v. It aborts, if v or t are invalid ciphertexts.

This simulation is computationally indistinguishable from the real protocol run, given
a computationally IND-CPA secure cryptosystem. This holds because the maximal
advantage that adversary A might have for distinguishing S from honest CP1 occurs
if it actually knows w1 and can distinguish c from ([w1])pk. Finally, the simulator
has ([w2])pk and ([kS])pk as the queries to the zero-knowledge proof. It can define also
the message ([z1])pk = ([w1])

kS
pk · t. Therefore it has all the correct values for inputs of

CdsZKTags. In addition, the simulator has all the values ([x∗1])pk, ([y∗1])pk and ([w1])pk ·v−1
that it needs as queries in CdsZKMult. Hence, it can run as a simulator for the proofs
if the simulator is defined.

The verification in Triples proves the correctness of CP2 to CP1 and vice versa. In
general, we need that if CP i has behaved correctly in the triple generation protocol,
then this verification convinces CP i that the other party CPj also behaved correctly.

Our initialisation of the correctness proof of CP1 uses the special cases of CdsZk-
Mul (Algorithm 1) and fails, if the multiplicative relation does not hold (CdsZKMult)
or the MAC tag is not correctly formed (CdsZKTags). Their main difference from Cd-
sZkMul is that the prover CP1 does not send the full initial query, but the query
messages are fixed by the verifier CP2. Previously, we stressed that CdsZKTags can
not be simulated because we need a zero-knowledge proof for the correctness of q3 for
that. The same holds for CdsZKMult, because, also in there, CP1 has to be convinced
that q3 is computed correctly. However, for now we do not specify this proof and it
is up to the follow-up work to define a simulatable initialisation for CdsZKMult and
CdsZKTags. As for the CdsZKTags, we expect the simulatable version of CdsZKMult to

43

also have the same input queries as the current version and use this assumption as a
basis for our security proofs.

In addition, the verification step should ensure to CP2 that at this stage the sharing
[[w]] is correct and CP1 can not frame it later. Analogously to the Singles protocol, anti-
framing property holds for CP1 because of the commitment it made to w1.

Proving the correctness of CP2 uses Triple Verification and needs to pick another
unverified triple [[a]]N , [[b]]N , [[c]]N . If any of the two triples in the protocol are faulty
then the correctness proof of CP2 fails, because h 6= 0. Actually, by the original
definition, Triple Verification is used to prove the multiplicative relation to both CP i.
However, here we only use this to prove the correctness of CP2 and similar proof about
CP1 is done using CdsZKMult. This is due to the fact that using Triple Verification
to also prove the multiplicative relation to CP2 could avoid CdsZKMult, but would
introduce additional CdsZKTags. Currently CP2 does not have any knowledge about
the correctness of the verification triple [[a]]N , [[b]]N , [[c]]N and, therefore, we should use
CdsZKTags to also prove that the tag of the third element of the verification triple
is correct, meaning z(c)1 + z

(c)
2 = k · (c1 + c2). The latter is needed to prove to CP2

that the commitments used to open h in Triple Verification were computed correctly.
However, CdsZKMult can be implemented slightly more efficiently than CdsZKTags
and, therefore, our current specification is reasonable if using these proofs. A different
approach should be considered if a more efficient analogue of CdsZKTags is used.

Algorithm 12 CdsZkMul for proving the multiplicative relation of the shares
(CdsZKMult)
Setup: Commitment parameters ck,

Paillier keypair (pk, sk) from the protection domain setup
Data: Shares [[x]]N , [[y]]N , [[w]]N
Result: True for successful proof of x · y = w, False in case of any failure
1: Round: 1
2: CP i sets q1 = ([x1])pk, q2 = ([y1])pk
3: CP2 sets q3 = ([w1])pk · Encpk(w2) · (([x1])y2pk · ([y1])

x2
pk · Encpk(x2 · y2))−1

4: CP2 generates e1, e2 ←M, r1, r2 ← R, r ← R1, s← S
5: CP2 computes and sends a1 = qe11 · Encpk(e2, r1) to CP1

6: CP2 computes and sends a2 = qe13 · qe22 · Encpk(Encode(s, r), r2) to CP1

7: Round: 2
8: CP1 computes s′ = Decode(Decsk(a2)− Decsk(a1) · y1)
9: CP1 computes (c, d) = Comck(s

′) and sends c to CP2

10: Round: 3
11: CP2 sends (s, e1, e2, r1, r2, r, q3) to CP1

12: Round: 4
13: CP1 verifies that Decsk(q3) = x1 · y1
14: CP1: if a1 6= qe11 · Encpk(e2, r1) return False
15: CP1: if a2 6= qe13 · qe22 · Encpk(Encode(s, r), r2) return False
16: CP1 sends d to CP2

17: Round: 5
18: CP2: if Openck(c, d) 6= s return False

19: return True

44

Theorem 4.4.3. The verification steps in triple generation algorithm Triples are cor-
rect.

Proof. The verification is correct, if it accepts correctly formed triples. We only need
to show the correctness of the computations by CP2 as the correctness of CP1 is verified
by two versions of the correct and universally composable CdsZkMul and the validity
of the ciphertext.

Hence, we need to show that for a correct triple [[x]]N , [[y]]N , [[z]]N and a verification
triple [[a]]N , [[b]]N , [[c]]N we get h = 0 from Triple Verification (Algorithm 5). We assume
the correctness of necessary subprotocols of Triple Verification: Constant Multiplication,
Subtraction, Constant Addition and Publish. By definition, we have

h = s · [[w]]N − [[c]]N − d · [[a]]N − g · [[b]]N − gd
= s · x · y − a · b− (y − b) · a− (sx− a) · b− (sx− a) · (y − b)
= sxy − ab− ya+ ab− sxb+ ab− sxy + sxb+ ay − ab = 0 .

Therefore, in the case of a correctly formed triple the verification succeeds.

Theorem 4.4.4. The verification steps in triple generation algorithm Triples are sta-
tistically 1

p
-secure against a cheating CP2 and as secure against a cheating CP1 as the

proofs CdsZKTags and CdsZKMult, where N = pq, p, q are primes and p < q.

Proof sketch. The security of CP2 depends on the security of CdsZKTags and CdsZKMult,
that we should improve in the future to make them simulatable. However, the sound-
ness property from CdsZkMul still holds, therefore, a successful proof indicates that
CP1 has computed correctly.

Hence, we need to show the security of verification of the correctness of CP2. The
verification algorithm for multiplicative relation is information-theoretically secure for
finite fields [25]. According to CRT, breaking the security of the verification in case of
modulus N = pq also means breaking it separately modulo primes p and q, therefore
the verification phase is 1

p
secure for CP1 where p < q.

4.5 Receiving inputs from the input party

The previously described Publish-RP i (Algorithm 8) can be combined with the SPDZ
classification protocol Classify-IP i (Algorithm 4) in a straightforward manner to obtain
a protocol for sharing the input of any third party. However, this version of the
algorithm requires heavy computation and communication from the input party, who
has to take part in a zero-knowledge proof. This is not efficient in many practical
settings where we could have a variety of input devices, for example, smartphones and
tablets.

There is a different protocol Classify-IP?i in Algoritm 13 that uses ideas from the
Singles protocol. In a way, the input party runs the single generation by itself and
sends the corresponding share parts to the computing parties. Of course, instead of
making a random share, it creates a share for its secret. The only addition is that the
computing parties have to notify the input party if they accept this share. This means
that the input party should wait and check that its input was accepted before it can
know that it has correctly inserted the data.

45

Algorithm 13 Receiving an input from (non-computing) IP i (Classify-IP?i)
Data: Input party IP i has a secret x
Result: Computing parties CP i have a valid share representation [[x]]N

1: Round: 1
2: CP i fixes ∆ = 0
3: IP i generates x1, z2 ← ZN , r, t← Z∗N
4: IP i computes x2 = x− x1
5: IP i computes c = ([k])x2pk · Encpk(−z2, t)
6: IP i sends x1, c, r to CP1

7: IP i sends x2, z2, ([x1])pk = Encpk(x1, r), t to CP2

8: Round: 2
9: CP1 computes z1 = k · x1 + Decsk(c)

10: CP2 computes c∗ = ([k])x2pk · Encpk(−z2, t)
11: CP2 sends ([x1])pk, c

∗ to CP1

12: Verification:
13: CP i verifies that ([x1])pk is a valid ciphertext
14: CP1 verifies that c∗ = c
15: CP1 verifies that it received ([x1])pk = Encpk(x1, r)
16: CP1 proves z1 + z2 = k · (x1 + x2) to CP2 using CdsZKTags
17: CP1 and CP2 notify IP i about the verification outcome

Theorem 4.5.1. Protocol Classify-IP?i in Algorithm 13 for collecting inputs from input
parties is correct.

Proof sketch. The correctness of additive shares is clear by the definition as x = x1 +
x2 + ∆ = x1 +x−x1 + 0 = x. If CP1 accepts the commitment then it is valid. Finally,
we need that the MAC tag is correct:

z = z1 + z2 = k · x1 + k · x2 − z2 + z2 = k · (x1 + x2) ,

thus, in case of honest participants the zero-knowledge proof succeeds and the share is
correctly formed.

There are three potential security risks in this protocol: (1) CP i might modify the
share, (2) CP2 might modify the share, and (3) IP i might try to give inconsistent share
representation. However, IP i can always affect the outcome by inputting a maliciously
chosen value x instead of the valid input value. Still, by security definition regardless
of the choice of x it can only input a valid representation [[x]]. This version of the
protocol is only usable if IP i is not one of the computing parties and does not collude
with them. The former is not a restriction as we have a simpler protocol for CP i to
classify inputs, but the latter may be too restrictive for practical applications.

Theorem 4.5.2. Protocol Classify-IP?i for collecting inputs from input parties is per-
fectly secure against corrupted CP1 and IP i and computationally secure against cor-
rupted CP2 with additional 1

p
error probability, assuming a computationally IND-CPA

secure cryptosystem and modulus N = pq, where p is the smaller of its prime factors.

Proof sketch. The principal ideal functionality of this protocol would be such that
the IP i gives x to the TTP and TTP gives shares of x to the computing parties.
However, we can not achieve this as the distribution of the shares of x is controlled

46

by IP i. Hence, we define an ideal model where IP i gives x, x1, z2 and r to TTP, who
creates the remaining z1 and forwards these to the computing parties. After that, the
computing parties notify the TTP about accepting or rejecting these shares and the
TTP forwards the outcome as Success or Failure to all parties.

Corrupted CP1. The simulator at first receives x1, z1, r from the TTP. It then
computes c = Encpk(z1) · ([k])−x1pk = Encpk(z1 − k · x1) and sends x1, c and r to the
corrupted CP1. By definition CP1 gets the output z1 as the one given by the TTP.
In the following, the simulator simulates the messages from CP2 as Encpk(x1, r) and
c∗ = c. For the zero-knowledge proof, the simulator can define x∗2 = −x1 and z∗2 = −z1
to behave as an honest verifier for the case 0 = k · 0. This can be done as the proof
does not leak x∗2 and z∗2 and, therefore, the corrupted CP1 sees the same view that it
would in the real world. Finally, the simulator receives Continue or Abort from the
corrupted CP1 and forwards this to the TTP. The outputs of the real and simulated
ideal world coincide as in case the sharing succeeds both computing parties have the
same output shares in both worlds and in case the sharing does not succeed they have
both seen the same shares in these two versions of the protocol.

Corrupted CP2. In case of the simulation for corrupted CP2, we assume that the
shared setup step was also simulated, so that the simulator has kS , whereas the CP2

has ([kS])pk. The simulator receives x2, z2 and ([x1])pk from the TTP. It has to specify
the value t, that it can do by generating it as honest IP i would. It then forwards x2, z2,
([x1])pk and t to CP2. On messages c∗ and ([x1])pk from the corrupted CP2, the simulator
verifies that the ([x1])pk is the same as sent to CP2 and that c∗ = ([kS])x2pk · Encpk−z2, t.
If these are incorrect, then the simulator outputs Failure, otherwise it continues the
simulation. For the zero-knowledge proof, the simulator has ([x1])pk and ([kS])pk meaning
that it can also compute ([z1])pk = (([x1])pk ·Encpk(x1))

kS ·Encpk(−z2) = Encpk(x·kS−z2).
Therefore the simulator has all the correct inputs for CdsZKTags and it could behave
as a simulator for the proof. The outputs coincide as for a corrupted CP1.

Corrupted IP i. The simulator for a corrupted IP i at first receives x1, c, r, x2,
z2, ([x1])pk and t from the corrupted IP i. In then verifies that ([x1])pk = Encpk(x1, r)
and c = ([k])x2pk · Encpk(−z2, t). If these hold, then it sends x, x1, z2 and r to the TTP
and forwards the Success or Failure to the corrupted IP i as messages from CP i. If
the initial check does not verify, then it sends Failure to the IP i and notifies the TTP
that it does not participate in the protocol, which means that the protocol is a failure
for all parties. The output distributions coincide because the simulator performs the
same checks as the real functionality would to ensure the correctness of the IP i.

Actually, Classify-IP?i is also secure if CP1 and IP i are corrupted by the same
adversary, but insecure if CP2 and IP i are corrupted together. In the latter case, the
adversary could use one run of the protocol to check if some ciphertext that it sends
as c is an encryption of some fixed message m. In practice, this protocol can be fairly
securely used if CP1 only publishes encryptions of uniformly distributed elements in
ZN and the number of expected inputs is small, or if the input party is authenticated
and one party should input a limited number of elements. In this case, the probability
of an input party guessing the correct m within the expected number of input attempts
can be made arbitrarily small. For full security, we could define a zero-knowledge proof
where IP i or CP2 proves to CP1 that c or c∗ is computed correctly. It would be more
reasonable to define this for c∗ because we are more likely to have miners with bigger
computing capability. Besides, we can always use Classify-IP i with Publish-RP i, if
we expect IP i to have enough computational power to efficiently participate in an

47

analogous proof.
We have the anti-framing property, as after this protocol, all parties know that

the share was correctly formed. Intuitively, as in the Singles protocol, framing CP2

is infeasible because of the zero-knowledge proof, which shows that in this step CP1

could correctly open this share. Analogously, framing CP1 is impossible because it can
convince itself that the commitment ([x1])pk is correct. However, if any of the checks
fail during the protocol, then the computing parties can not easily verify whether the
input party or the other computing party is acting maliciously.

4.6 Efficiency of the protocols

This section analyses the theoretical cost of the proposed protocols. We have two
important criteria: (1) computational cost and (2) communication cost. These allow
to compare these protocols as well as to estimate the cost of future protocols that are
built from these existing blocks. As an overview, Figure 4.2 illustrates the current
state of existing primitive protocols and protocols combined from them. The protocol
Classify-IP i has actually two versions, one that is derivated from publishing algorithm
Publish-RP i (which is equal to Publish IP i), and the second, that is a standalone
protocol Classify-IP?i .

Addition

Subtraction

Constant Multiplication

Constant Addition

Singles Triples Multiplication

Publish-RP i

Publish-CP1

Publish-CP2

Publish-both-CP i

Classify-IP?i

Classify-CP1

Classify-CP2

Classify-IP i

Publish-CP&RP i

Figure 4.2: The hierarchy of protocols for the asymmetric setup

For a shorthand we define Add for Addition, Subtract for Subtraction, ConstMult for
Constant Multiplication and Multiply for Multiplication.

48

4.6.1 Computational cost

This section analyses the computational requirements if the protocols are applied to
one element, the extension to vectors in most cases just requires that amount of compu-
tation for each element. We focus on the multiplication and exponentiation operations
as addition and subtraction are always considerably more efficient.

For a |N |-bit exponent we assume that we need to perform approximately |N |
multiplications, as using square-and-multiply it can definitely be done with 2|N |. Fur-
thermore, Paillier encryption and decryption have approximately the cost of one expo-
nentiation, where exponent has length |N |, but multiplied elements have length 2 · |N |.
Finally, modular inversion has the cost of a few multiplications, denoted by i in the
following. For simplicity, we also assume that computing gcd for Paillier ciphertext
validity check also has cost i as both of these can be done by Euclidean algorithm.
Hence, we can estimate the computational complexity as the number of multiplication
on either values of ZN or Paillier ciphertexts in ZN2 of length 2|N |. Because of this
we divide the analysis to two parts and give separate results results for both of these
lengths. In total, the following should be taken as a rough estimate for comparing
these protocols and the total cost is the sum of both length with more relative cost for
length 2|N |.

Party Length Publish Add Subtract ConstMult Multiply

CP1
|N | 1 1 i+ 1 |N |+ 3 2|N |+ 2i+ 13
2|N | 0 0 0 0 0

CP2
|N | 0 0 0 3 7
2|N | |N | 1 i+ 1 |N | 4|N |+ 2i+ 4

Table 4.1: The computational cost of computation protocols as a number of multipli-
cations

Table 4.1 summarises the multiplicative cost of our basic computation protocols.
The length denotes the bitlength of the multiplication operands and other fields stand
for separate protocols. For Publish-CP i protocol, we consider the work that either
party CP i has to do in order to verify the result if the value is opened to it. We omit
Classify-CP i as it has exactly the same multiplicative cost as Publish-CP i. The results
are obtained by counting the corresponding operations in the protocols.

Party Length Singles Triples TripleVerif

CP1
|N | 1 2 4|N |+ 5i+ 22
2|N | 2|N | 3|N | 0

CP2
|N | 0 1 13
2|N | 2|N |+ i+ 1 5|N |+ i+ 3 8|N |+ 5i+ 5

Table 4.2: The computational cost of precomputation as a number of multiplications

The cost of precomputation can be seen from Table 4.2. The costs of zero-knowledge
proofs have been omitted from the precomputation protocols and can be found in
Table 4.3. We omit the cost of our commitment scheme from the analysis of the zero-
knowledge protocols as we use a lot smaller field for elliptic curves than in our general
computations. Likewise, the cost of Singles values has been omitted from the Triples
protocol, which here only illustrates the cost of obtaining one unverified triple as given
in Algorithm 11. Triple Verification is an exceptional protocol as its amortized cost per
vector element is slightly less than given in the table because we can pick one random
element to verify a set of triples.

49

Party Length CdsZKTags CdsZKMult

Prover |N | 2 2
2|N | 9|N |+ 3 8|N |+ 3

Verifier |N | 0 1
2|N | 7|N |+ i+ 5 9|N |+ i+ 7

Table 4.3: The computational cost of zero-knowledge proofs as a number of multipli-
cations

Table tbl:zk-comp-requirements illustrates the computational requirements of the
zero-knowledge proofs. It can be seen that CdsZKMult is more efficient on the side
of CP1 and actually it can easily be implemented more efficiently also for CP2. The
main complexity on the side of CP2 results from the computation of the third query
q3, which actually does several computation already performed in Triples and we could
reduce 9|N |+ i+7 to approximately 5|N |+ i+4. Therefore, in our context, CdsZKMult
is more efficient than CdsZKTags when used to verify the triple generation procedure.

Table 4.4 summarises the cost of protocols used to communicate with input and
result parties. Similarly to precomputation, the zero-knowledge proofs have been omit-
ted from this analysis. It can be seen that with additional proofs, the workload of RP i
in Publish-RP i is approximately the same as that of CP1 whereas CP2 does not need
to do any computations. However, Classify-IP?i adds the complexity of the proof to
the computing parties. Thus, in total IP i has lower workload than RP i.

Party Length Classify-IP?i Publish-RP i
CP1

|N | 1 0
2|N | 2|N |+ i 0

CP2
|N | 0 0
2|N | 2|N |+ i+ 1 0

IP i \ RP i
|N | 0 0
2|N | 3|N |+ 1 |N |

Table 4.4: The computational cost of protocols for communicating with a third party
as a number of multiplications

In total, the precomputation and zero-knowledge proofs form the most expensive
part of this protection domain. Therefore, they remain the most important point for
further optimisations.

4.6.2 Communication cost

This section analyses the cost of communication per protocol output in terms of the
number and length of the sent messages. As in the previous section, we have two clear
classes of messages with different length: plain elements of ZN and Paillier ciphertext.
In addition, we now include commitments for zero-knowledge protocols. These com-
mitments are pairs of elliptic curve elements and for a prime P each element can be
encoded as |P | + 1 bits. Decommitments consist of two values that are both at most
|P | bits. In addition, we can assume that the secret value in zero-knowledge proofs is
at most length |P |, and the randomness of the encoding function is bounded by N .

All the local computation protocols Addition, Subtraction, Constant Addition and
Constant Multiplication do not require any communication. In addition, protocols
Triple Verification and Multiplication only use communication during Publish protocols.

50

Party Length CdsZKTags CdsZKMult Singles Triples Publish

CP1

|N | 0 0 0 0 2
2|N | 1 0 1 1 0
|P | 4 4 0 0 0

CP2

|N | 5 5 0 0 2
2|N | 3 3 1 2 0
|P | 1 1 0 0 0

Table 4.5: The communication cost of computation protocols as number of messages

Therefore, it is sufficient to only analyse the communication cost of the zero-knowledge
protocols, precomputation and publishing.

Table 4.5 summarises the communication cost for each class of messages. As previ-
ously, the precomputation protocols only include the cost of their specific functions and
not proofs or other precomputation protocols. The amount or messages for a player
means how much messages of which length he has to send for each protocol. Publish
protocols only have a communication cost for one of the participants and the table
should be read so that CPj has to send that many messages in Publish-CP i. It can
be seen that the precomputations and Publish-CP i are quite efficient compared to the
zero-knowledge protocols.

Party Length Classify-IP?i Publish-RP i
CP1

|N | 0 3
2|N | 0 0

CP2
|N | 0 3
2|N | 2 1

IP i \ RP i
|N | 5 0
2|N | 2 0

Table 4.6: The communication cost of protocols for communicating with a third party
as number of messages

Table 4.6 gives an analogous overview for protocols including IP i or RP i. Sepa-
rately, they also prove more communication efficient than zero knowledge proofs. Thus,
also communication-wise, the zero-knowledge proofs are currently the main bottleneck
of this protection domain.

51

Chapter 5

Protocols for Beaver triple generation

This section describes our efforts to efficiently generate Beaver triples for various moduli
using the additively homomorphic Paillier cryptosystem. This section only considers
the semi-honest security setting as the main goal of this section is to propose new ideas
for precomputation and it is easier to reason about them in the passive model. Besides,
it is reasonable as we often can do precomputation by firstly fixing unprotected shares,
then protection mechanisms and finally, we can verify that the sharing is correct. More
specifically, we only consider the case of semi-honest static adversary in our security
proofs.

5.1 Setup for triple generation protocols

This chapter considers the case where we have additively shared secrets [[x]]M and [[y]]M
for some modulus M and the goal is to obtain [[w]]M where w = x · y mod N . Hence,
[[x]]M = 〈x1, x2〉.

Algorithm 14 Multiplication of additively shared secrets based on the Paillier cryp-
tosystem (Paillier Multiplication)
Setup: Paillier keypair with modulus N , where CP1 knows the secret key
Data: Shared secrets [[x]]M , [[y]]M
Result: Shared result [[w]]N , where w = (x1 + x2) · (y1 + y2) mod N

1: CP1 encrypts and sends Encpk(x1), Encpk(y1) to CP2

2: CP2 generates r ← ZN
3: CP2 computes and sends t = Encpk(x1 · y2 + y1 · x2 + r) to CP1

4: CP2 computes w2 = x2 · y2 − r mod N
5: CP1 computes w1 = x1 · y1 + Decsk(t) mod N

Protocol Paillier Multiplication in Algorithm 14 shows how to do simple share mul-
tiplication using the Paillier cryptosystem and additive secret sharing. This will be an
important tool throughout this chapter. This protocol is actually all that is needed to
generate triples [[x]]N , [[y]]N , [[w]]N for a Paillier modulus N .

Theorem 5.1.1. The Paillier Multiplication protocol for share multiplication using the
Paillier cryptosystem is correct.

52

Proof. It remains to show that indeed w = x · y mod N , which can be seen trivially, as

w = w1 + w2 = x1 · y1 + Decsk(t) + x2 · y2 − r
= x1 · y1 + x1 · y2 + x2 · y1 + r + x2 · y2 − r = (x1 + x2) · (y1 + y2) = x · y .

Theorem 5.1.2. The Paillier Multiplication protocol for share multiplication using the
Paillier cryptosystem is computationally secure against corrupted CP2 and statistically
secure against a corrupted CP1 in the passive model.

Proof. The ideal functionality of this protocol is such that it receives x1, y1 from CP1

and x2, y2 from CP2. It gives back w1 to CP1 and w2 to CP2.
In semi-honest case the simulator knows the inputs xi and yi of the corrupted party

and can easily forward them to the TTP. In both cases it gets wi back from the TTP
and must now make sure that the output of corrupted CP i is finally wi.

In case of a corrupted CP1, the output is fixed as w1 = x1 · y1 + Decsk(t) where
the simulator must fix t. Knowing w1, x1 and y1, the simulator can easily compute
c = w1 − x1 · y1 and fix t = Encpk(c). In is straightforward to see that the corrupted
CP1 will output w1. The outputs of the real and simulated world coincide.

In case of a corrupted CP2, we know that the output w2 = x2 ·y2−r, depends on the
randomness r chosen by the corrupted CP2. However, as it is semi-honest, we know that
it chooses r ← ZN , therefore, r is affected by the initial randomness of CP2. Knowing
the desired output w2 and inputs x2, y2 the simulator can compute r = x2y2 − w2

and pick a suitable randomness to run CP2 with. Therefore, the simulated run in the
ideal world and the corresponding run in the real world always have coinciding output
distributions.

As stated in the algorithm description, we can actually obtain something more
general, namely [[w]]N for w = (x1 + x2) · (y1 + y2) mod N from [[x]]M and [[y]]M , which
is actually closer to what we will use in the following. If we use a modulus M such
that M2 < N , then we actually have x · y < N . Therefore taking the final w mod M
should give us a valid triple. Actually, it is slightly more difficult as we have

w1 + w2 ≥ N or w1 + w2 < N .

In the latter case, this conversion works by reducing both shares separately. However,
in the former case a simple modulo reduction gives invalid results. This remaining issue
is discussed in Section 5.3.

For now, we can assume that we can get correct results for at least half of the
executions of Paillier Multiplication with modulus M . For example, if we always toss
a fair coin after the generation and then either try to correct the error by computing
w = w1 +w2−N mod M or do not try to correct it, then we get the right triple half of
the times. A similar algorithm has been used for precomputations also by predecessors
of SPDZ [7, 25], but with restrictions to the size of the randomness r to avoid the
overflow.

We say that the yield of the protocol is the ratio of the length of the produced triple
elements to the length of the Paillier modulus and denote it by γlen. Analogously, by
γnet we denote the ratio of triple length to the cumulative length of exchanged messages
on the network. Finally, by γcomp we denote the ratio of outputs bits to multiplications

53

of ciphertexts that are elements of length 2|N |. As in the asymmetric case, we assume
that encryption and decryption require |N | multiplications and that the ciphertexts
have length 2|N |. In general, we would like to maximise all these parameters for the
best efficiency. For packing the best achievable bound is 1, for others there is no fixed
limit. For now, we focus on maximising γlen and give other for additional comparison
in hope that they are easier to improve on using clever implementation tricks.

Clearly, for modulus N we have

γlen = 1, γnet =
|N |

3 · 2|N |
=

1

6
and γcomp =

|N |
6|N |+ 2

≈ 1

6
.

For an arbitrarily chosen modulus M , where M2 < N , we achieve on average

γlen =
1

2
· |M |
|N |
≤ 1

4
, γnet =

1

2
· |M |

3 · 2|N |
≤ 1

24
, γcomp =

1

2
· |M |

4|N |+ 2|M |+ 2
≤ 1

20
,

if we assume that we get half of the triples correctly.

5.2 Packing several shares into one generation

The introduced Paillier Multiplication was used for a general modulusM with a relation
to the used Paillier modulus N , approximately M2 < N , or for M = N . It could then
be used for any such modulusM , but is clearly most efficient in terms of γlen if the size
of M is close to the bound M2 < N . However, for practical sizes of N , this results in a
very long |M | ≥ 1024. This section explores how shorter types could be packed inside
elements of ZM so that we can most efficiently use the triple generation protocols and
learn meaningful triples for shorter moduli.

The efficiency of packing is mainly shown by γlen. The values for γnet and γcomp
reflect more the communication and computation cost that we need to compute with
given packing.

5.2.1 Packing as base-B numbers

Packing as B-ary numbers means that each element modulo M < B represents a digit
and we pack them as a numbers of base B. A three-digit base-B number could be
written out as

x = B2 · x3 +B · x2 + x1 ,

where xi < B are digits. If we assume, that y is written out in a similar manner as

y = B2 · y3 +B · y2 + y1 ,

then the corresponding multiplication becomes

xy = B4x3y3 +B3(x3y2 + x2y3) +B2(x2y2 + x1y3 + x3y1) +B(x2y1 + x1y2) + x1y1 .

This shows that we could get a triple x1, y1, x1y1 assuming that x1y1 does not overflow
the B-ary digit. With restrictions to the initial xi and yi values we can ensure that
this nor other combinations do not overflow and xy is a five-digit number. Thus, we
could also get a triple x3, y3 and x3y3.

54

Packing as straightforward B-ary numbers is, therefore, not very beneficial as we
did not receive a triple x2, y2, x2y2. However, we could consider another example, with
x as before, but y is modified, giving

x = B2 · x3 +B · x2 + x1

y = B6y3 +B3 · y2 + y1 .

The resulting multiplication is

xy =B8x3y3 +B7x2y3 +B6y3x1 +B5x3y2 +B4x2y2 +B3x1y2+

+B2x3y1 +Bx2y1 + x1y1 .

Here we can see that xy contains all the triples xi, yi and xiyi, but also some elements
xiyj, i 6= j that we do not need. Picking the powers in y as multiples of the number of
digits in x always gives analogous results. More specifically, if both pack n elements,
then the product would have n2 digits where we are only interested in n of them in form
xiyi. Thus, in this packing we only get the same number of triples as the square-root
of the number digits in the base-B representation of xy.

What we need to achieve is actually that every result xiyi is multiplied by a unique
power of B. On the other hand, we do not care about the other xiyj, which could share
the same powers of B between them. This observation allows us to always make small
adjustments to special cases. For example, using

y = B4y3 +B2y2 + y1

would also enable us to get all the xiyi pairs with the gain of of two B-ary digits. The
result xy is only a seven digit number as

xy =B6x3y3 +B5x2y3 +B4(x1y3 + x3y2) +B3x2y2 +B2(x1y2 + x3y1)+

+Bx2y1 + x1y1 .

However, we can not get rid of all the unnecessary products xiyj in this packed multi-
plication result.

The problem with using this approach in a straightforward manner is that we have to
assume that yixi < B, which essentially means that the result xy contains integer form
results of all triples as digits. We can not use this directly with Paillier Multiplication,
as the randomisation there would ruin this structure. However, we can not define it
without any randomisation either because otherwise seeing yixi and knowing xi also
leaks the secret yi. A possible solution is that we actually redefine the randomising
element as

r =
∑

Biri

and make sure that at least for all ri + xiyi, there is no overflow from B from either
side. On the downside, this is not completely secure because the values ri+xiyi will not
be uniformly distributed and therefore may leak information about xiyi. Commonly,
we would define a security parameter σ so that r is σ bits longer than xiyi to hide it
with probability 1 − 2−σ. The hiding properties of this randomisation are addressed
by Theorem 5.2.2.

Therefore, in Paillier Multiplication with base-B numbers we achieve

γlen =
|M | ·m
|N |

≤ 1

2
, γnet =

|M | ·m
3 · 2|N |

≤ 1

12
, γcomp =

|M | ·m
4|N |+ 2|M |+ 2

≤ 1

10
,

55

because we always get the correct outcome w1 + w2 < N . However, the bounds are
only achievable in very insecure settings where we do not use the randomisers.

The main benefit of this approach is that there are no restrictions to the length of
the packed type because we can always pick a suitable B. The following Algorithm 15
uses a version of this linear packing.

5.2.2 Triple generation with partial base-B packing

Protocol B-Triples in Algorithm 15 is the protocol by Thomas Schneider as used in [48].
In uses the ideas of B-ary packing, however, these are used slightly differently from
the previous initialisation. One party sends xi separately and the other responds with∑
Bixiyi + ri. This is not very communication-efficient, but avoids the occurrence of

elements xiyj in the packed response.
The main drawback of this protocol is that although we use randomness to blind

the encrypted response, we actually have secret sharing over integers in the response v
and it may leak some information about the shares. The main idea of this protocol is
to reduce the network communication compared to the basic Paillier Multiplication. The
gain comes from the fact that the responder does not need to send back a ciphertext
for each of the triple, but packs elements into one ciphertext.

Let σ denote a statistical security parameter. The efficiency of this protocol depends
on σ and the length k = |M | of the initial single values. Variable ` stands for the length
of the packed values. We have ` = 2k + 2 + σ and thus, it is possible to pack b|N |/`c
responses into one ciphertext. This length also defines the randomness that is used to
hide the actual value of the inputs.

Algorithm 15 Generating m < |N |/` triples with B-ary packing (B-Triples)
Setup: Security parameter σ, modulus length k = |M |, ` = 2k + 2 + σ
Data: Arrays of shared secrets [[x1]]M , . . . , [[xm]]M and [[y1]]M , . . . , [[ym]]M
Result: Array [[w1]]M , . . . , [[wm]]M , where [[wi]]M = [[xi · yi]]M
1: CP1 sends Encpk(x1,1), . . . ,Encpk(x1,m) to CP2

2: CP1 sends Encpk(y1,1), . . . ,Encpk(y1,m) to CP2

3: CP2 fixes r = 0, e = 0, Encpk(e)
4: for i ∈ {1, . . . ,m} do
5: CP2 generates a random ri ← {0, 1}2·k+1+σ

6: CP2 computes Encpk(ti) = Encpk(x1,i · y2,i + y1,i · x2,i)
7: CP2 computes r = r · 2` + ri
8: CP2 computes Encpk(e) = Encpk(e · 2` + ti)
9: CP2 computes w2,i = x2,i · y2,i − ri mod M

10: end for
11: CP2 encrypts Encpk(r)
12: CP2 sends Encpk(v) = Encpk(e+ r) to CP1

13: CP1 decrypts and unpacks single values v1||v2|| . . . ||vm = Decsk(Encpk(v))
14: for i ∈ {1, . . . ,m} do
15: CP1 computes w1,i = x1,i · y1,i + vi mod M
16: end for
17: return [[c]]

For example, choosing |N | = 2048, σ = 112 and k = 32 as in [48] allows us to
pack 11 elements of 32-bits to 2048-bit modulus. The main strength of this approach

56

is that there is no need for share conversion as the fixed length of elements also ensures
that the response does not overflow N and the algorithm always yields correct triples
modulo M .

Theorem 5.2.1. Protocol B-Triples in Algorithm 15 for generating Beaver triples with
partial B-ary packing is correct.

Proof. We need to show that wi = xi · yi for all i ∈ 1, . . . ,m. For this, it is crucial to
analyse what happens in the packing. We define B = 2` and the cycle computes the
response

e =Bm−1 · (x1,1 · y2,1 + x2,1 · y1,1) + . . .+B · (x1,m−1 · y2,m−1 + x2,m−1 · y1,m−1)+
+ (x1,m · y2,m + x2,m · y1,m)

and a randomness
r = Bm−1 · r1 + . . .+B · rm−1 + rm .

Finally, the sum of these is computed and sent back to CP1 who can decrypt and
disassemble it to blocks

vi = x1,i · y2,i + x2,i · y1,i + ri .

We assume that the elements xi and yi have a length of k bits, thus, each x1,i ·y2,i+
x2,i · y1,i is at most 2k + 1 bits long. The randomness r is defined as 2k + 1 + σ bits,
which means that the value vi is at most 2k+ 2 +σ bits and if we define ` > 2k+ 2 +σ
then each of these values fits into an `-bit slot. Thus, the packed value can always be
restored correctly if this value is smaller than the encryption modulus, which is ensured
as m · ` < |N |.

It remains to show that wi = xi · yi, which can be easily seen, as

wi = w1,i + w2,i = x1,i · y1,i + vi + x2,i · y2,i − ri
= x1,i · y1,i + x1,i · y2,i + x2,i · y1,i + ri + x2,i · y2,i − ri
= (x1,i + x2,i) · (y1,i + y2,i) = xi · yi .

Theorem 5.2.2. Protocol B-Triples in Algorithm 15 for generating Beaver triples with
B-ary packing is statistically secure against a corrupted CP1 and computationally secure
against a corrupted CP2, given a (t, ε)-IND-CPA secure cryptosystem and statistical
security constant σ for packing.

Proof sketch. The simulator can adjust the outputs of either party to correspond to
the results from the TTP as in the Paillier Multiplication. In the following we consider,
how the simulator can simulate the communication of this protocol.

Corrupted CP1. The simulator can replace each vi with an encryption of a random
element r∗ ← R where R = {tmax/2, . . . , 22k+σ+1+ tmax/2} where tmax = 22k+1−2k+2+
2 < 22k+1 is the maximal value that ti might have. It is easy to see that the minimal
value that ti might have is 0, therefore, tmax/2 is the median value of ti. The advantage
of the adversary in this case is bounded by the statistical distance of v = ti + ri and

57

r∗. The value v = ti + ri is uniformly distributed in T = {ti, . . . , ti + 22k+σ+1} where
0 ≤ t ≤ tmax. Hence, the statistical distance is

sd(r∗, v) =
1

2
·
∑

x∈R∪T

∣∣∣Pr[r∗ = x]− Pr[v = x]
∣∣∣

=
1

2
·
(∑
x∈R∩T

∣∣∣Pr[r∗ = x]− Pr[v = x]
∣∣∣+

∑
x∈T\R

∣∣∣Pr[r∗ = x]− Pr[v = x]
∣∣∣+

+
∑
x∈R\T

∣∣∣Pr[r∗ = x]− Pr[v = x]
∣∣∣)

=
1

2
·
(∑
x∈T∩R

∣∣∣ 1

|R|
− 1

|T |

∣∣∣+
∑
x∈T\R

∣∣∣0− 1

|T |

∣∣∣+
∑
x∈R\T

∣∣∣ 1

|R|
− 0
∣∣∣) .

It is possible to continue this evaluation as we know that |R| = |T | = 22k+σ+1 + 1 and
that 0 ≤ |R\T | = |T \R| ≤ tmax/2. Therefore we can give an upper bound to sd(r∗, v)
as

sd(r∗, v) =
1

2
·
(∑
x∈T∩R

0 +
∑
x∈T\R

1

22k+σ+1 + 1
+
∑
x∈R\T

1

22k+σ+1 + 1

)
≤ 1

2
· tmax ·

1

22k+σ+1 + 1
=

tmax
22k+σ+2 + 2

≤ 22k+1

22k+σ+2 + 2
≤ 2−σ .

Therefore, sending an encryption of a random element from R is statistically 2−σ

indistinguishable from a correctly computed reply. It follows that the simulator can
pick r∗ such that the output of the corrupted CP1 is as desired.

Corrupted CP2. The simulator should send the encryptions of x1,i and y1,i to CP2,
which it can do efficiently by sending the encryptions of random values. Due to the
IND-CPA security, the simulation is at distance 2m · ε from the real protocol run for
any t-time adversary.

The efficiency of this protocol depends on the chosen parameters, but for now, we
write it out in terms of m < |N |/` and |M |, where ` = 2|M |+σ+ 2. In total, we learn
|M | ·m bits of valid triples which gives

γlen =
|M | ·m
|N |

≤ 1

2
− σ ·m

2|N |
− m

|N |
<

1

2
,

where we get the estimate as we know that ` ·m < |N | which gives

|M | ·m <
|N |
2
− σ ·m

2
−m .

Communication-wise this protocol gives

γnet =
|M | ·m

(2m+ 1) · 2|N |
≤ 1

4 · (2m+ 1)
.

Finally, in terms of computation this protocol is also quite expensive due to the separate
encryption operations resulting in

γcomp =
|M | ·m

(2m+ 2) · |N |+ 2m · |M |+m · `+ 2m+ 1
≤ 1

4m+ 4
.

58

5.2.3 Packing using the Chinese remainder theorem

We can also use the Chinese remainder theorem for packing several elements into
one ciphertext. However, the used mechanism is quite different from the previously
described B-ary packing and can only be used, if we are using elements with pairwise
coprime moduli pi. By definition, CRT can be used to combine all those single random
values modulo pi for a modulus

M = p1 · . . . · pk
and execute the triple generation protocol to obtain the corresponding third triple
elements modulo M .

For example, we start with values xi and yi and we interpret them as{
x = xi mod pi

y = yi mod pi .

Then, we combine them using CRT to learn x mod M and y mod M which are inputs
to the triple generation protocol for learning xy mod M . We know that, by definition,
we have {

xy = xiyi mod pi ,

where we are interested in learning the shares for xiyi. The CRT allows us to reduce
the final result respectively for all moduli pi to learn the third triple element for all
initial random value pairs. Therefore, we can learn xiyi from xy mod M as

xiyi = xy mod pi .

Packing with CRT enables us to get exactly |M |-bit triples from one execution
of the triple generation protocol. However, we could also use this with the idea to
later convert all these shares of different moduli to one shared modulus as discussed in
Section 5.3.2. This would result in approximately |M |

2
-bit triple elements.

This packing can be trivially well used with the Paillier Multiplication protocol be-
cause all we need is to learn a valid triple moduloM to be able to get all separate triples
modulo pi. However, we have to ensure that, in this case, M2 < N . Therefore, we can
get approximately |N |

2
-bit triples when using a modulusM . Using Paillier Multiplication

with CRT packing gives exactly the same yields as it does for any arbitrarily chosen
modulusM as given in Section 5.1. We need to do additional computations for packing
and unpacking, but these do not significantly affect our computational cost as they are
not operations on ciphertexts.

5.3 Share conversion

Share conversion is the process of transforming a shared value [[x]]M for one fixed mod-
ulusM to a valid share [[v]]M∗ of the same secret value x = v under a different modulus
M∗. It will be necessary as we use the Paillier cryptosystem that has homomorphic
properties modulo N for generating triples of a generic modulus M . This section fo-
cuses on transforming [[x]]2 to [[v]]M and [[x]]N to [[v]]M , where N > M that are needed
for triple generation. In addition, we stress additional restrictions that must be met
in order to successfully convert the triple from Paillier Multiplication so that the multi-
plicative relation still holds after the conversion.

59

5.3.1 Converting binary shares to any modulus

A protocol for obtaining [[v]]M from [[x]]2 is a simpler subcase of all conversion protocols
as x in [[x]]2 has only two potential values. Thus, if x = 0 we should have [[v]]M as
v1 ← ZM and v2 = M − v1 or, correspondingly, v2 = M − v1 + 1 for x = 1.

CP1 input
x1 = 0 x1 = 1

CP2

input
x2 = 0 v2 = M − v1 v2 = M − v1 + 1
x2 = 1 v2 = M − v1 + 1 v2 = M − v1

Table 5.1: Oblivious transfer for share conversion [[x]]2 to [[v]]M

Such a replacement of the shares can be achieved using oblivious transfer (OT).
The 1-out-of-2 OT is a communication protocol for transporting information so that
the sender does not know which of its two inputs it forwarded to the receiver. In
addition, the receiver is only able to learn one of the sender’s inputs per protocol. The
idea for share conversion is that the sender defines v1 ← ZM and sends v2 = M − v1 or
v2 = M−v1 +1 to the receiver based on the value of x. More precisely, we do not open
the value x, but do OT based on the shares of [[x]]2 being equal (x = 0) or not (x = 1).
CP2 learns the outcomes as specified in Table 5.1 for each potential input combination
and CP1 always outputs v1.

For the efficiency analysis, we use the well known AIR OT protocol [1] for the 1-
out-of-2 case. We use it with the Paillier cryptosystem as defined in Algorithm 16.
Any OT protocol could be used in future implementations, but we will use this due
to its simplicity to analyse the efficiency of using this share conversion in the triple
generation protocols.

Algorithm 16 Aiello-Ishai-Reingold oblivious transfer
Setup: Receiver has defined a Paillier keypair (pk, sk), which defines a modulus N
Data: Receiver has input x ∈ {0, 1}, Sender has two secrets s0 and s1
Result: Receiver learns sx
1: Receiver computes and sends c = Encpk(x) to the Sender
2: Sender generates r0, r1 ← ZM
3: Sender computes and sends c0 = cr0 · Encpk(s0) to the Receiver
4: Sender computes and sends c1 = (c · Encpk(−1))r1 · Encpk(s1) to the Receiver
5: Receiver decrypts sx = Decsk(cx)

The idea of AIR OT is straightforward, as c0 = Encpk(0 · r0 + s0), if x = 0 and
analogously, if x = 1 then c1 = Encpk(0 · r1 + s1). The role of the randomiser ri is to
ensure that the other secret is not leaked. For example, in case the query was x = 0,
then c1 is an encryption of a random value Encpk(−1 · r1 + s1) and does not reveal s1.

5.3.2 Problems with converting the third triple element

We can expect the first two elements x and y of the triple to be generated according
to some fixed modulus M . However, the triple generation protocol may change the
modulus for the outcome w = x · y. The possibility to convert this outcome back to
the original modulus means that we can actually generate triples for any modulus.
However, there are losses in how many bits we use in the multiplication and afterwards
receive as triples.

60

One place where such share conversion is needed is from the Paillier modulus to our
chosen modulus M . At some point in triple generation, we use Paillier Multiplication,
where the result will be given modulo N . Namely, if we have some uniformly generated
values [[x]]M and [[y]]M modulo M , then we know that x · y < N if M2 < N . Hence, we
can avoid modular reductions in the product. However, working with additive share
representation requires more care, as we actually have

(x1 + x2) · (y1 + y2) < N ,

where x1 + x2 < 2M and

(x1 + x2) · (y1 + y2) < 4M2 .

Hence, we require that 4M2 < N . With this restriction to initial values, we can apply
general share conversion to the third triple element and achieve a multiplicative triple
with respect to modulus M .

The main challenge in the share conversion is to differentiate between having either

w1 + w2 ≥ N or w1 + w2 < N .

The latter case means that if x·y = w1+w2 mod N then also x·y = w1+w2 mod M and
share conversion can be obtained by converting both wi mod M separately. However,
the former gives us x·y = w1+w2−N mod M and means that we have to check for this
error when converting triples. Achieving this error correction is one of the important
goals of the triple generation algorithms based on Paillier Multiplication. The main idea
is that the parties can collaboratively decide if they have w1 +w2 ≥ N or w1 +w2 < N
and in the former case they can fix the shares as w = w−N before modular reduction.

There are many different ways for performing this check. For example, one pos-
sibility is to do computations as in Triple Verification and check for the value of h.
It is straightforward to fix values of h that mean that a triple was correct or had
w1 +w2 ≥ N . For security, h should not be published and the correction could be done
based on the value of h using oblivious transfer. A more efficient method is introduced
as part of Algorithm 17 and a more general idea analogous to that is also specified
later in Chapter 6 as Algorithm 20. The ideas in Algorithm 17 and Algorithm 20 can
be used to perform general conversion from [[x]]N to [[v]]M , independently of the fact
that we are working with a multiplication result.

In addition, share conversion of the third triple element can be used with CRT
packing to get results that all use the same modulus. For example, the initial shares of
xi and yi are fixed with relation to some modulus P and then we choose primes pi > P 2

and interpret these shares each for a different modulus pi. After the triple generation
we learn xy mod pi, but as previously, we know that xy < pi and now converting them
from modulus pi to P is the same as converting from N toM after Paillier Multiplication.
This approach decreases the efficiency of the CRT packing by half, but helps to get rid
of the need to use different moduli.

5.3.3 Triple generation with share conversion

The problem with using Paillier Multiplication for triple generation in a straightforward
manner was mentioned in Section 5.3.2. It means that occasionally this protocol gives
a valid triple for moduli other than the Paillier modulus, but sometimes the result is

61

invalid. This section introduces a way that uses the Paillier Multiplication algorithm,
but adds additional checks to always get the correct result for a chosen modulus.

The idea of ShareConv-Triples in Algorithm 17 is to use a modulus 2 to test if the
shares of the third element w1 + w2 < N or overflow N and base the share conversion
on the result of this check. This clearly leaks some information about the result as we
need to declassify the least significant bit of the inputs, but this may not be an issue
for all use-cases. The idea is that by declassifying the least significant bits of x and y
we learn what the parity of w should be without any modular reductions. It could be
used with CRT packing trivially as long as we do not use modulus 2 in the packing.
Using this idea exactly like this is actually not secure as it leaks the least significant
bits of x and y.

However, we can easily avoid the leakage, by actually using an odd modulus P that
is one bit shorter that maximum length of M in Paillier Multiplication. In such case we
just define

xi = 0 mod 2 and yi = 0 mod 2

and use the CRT to compute the representation of x and y for modulus 2P . We can
learn the correct triple modulo P by reducing the final shares of [[w]]2P modulo P .

According to the CRT, the multiplicative relation modulo 2P holds exactly, if it
holds for all its prime divisors, including 2. The latter means that by checking the
relation modulo 2, we actually verify that it holds for modulus 2P .

Algorithm 17 Triple generation with share conversion (ShareConv-Triples)
Setup: Paillier keypair (pk, sk) with modulus N

2|P |+ 5 < |N | and P is odd
Data: Shared secrets [[x]]P , [[y]]P
Result: Third triple element [[w]]P where w = xy mod P

1: CP i uses CRT with inputs xi = 0 mod 2 and xi = xi mod P to learn xi mod 2P
2: CP i uses CRT with inputs yi = 0 mod 2 and yi = yi mod P to learn yi mod 2P
3: CP compute [[w]]2P from [[x]]2P , [[y]]2P with Paillier Multiplication
4: CP i computes ci = wi mod 2
5: CP convert c = c1 + c2 from [[c]]2 to [[c]]2P
6: CP i computes wi = wi −N · ci mod 2P to correct the potential mistakes
7: CP i fixes wi = wi mod P to get the correct final modulus

Theorem 5.3.1. The ShareConv-Triples protocol in Algorithm 17 for generating Beaver
triples with simple share conversion is correct assuming the correctness of share con-
version from [[c]]2 to [[c]]2P and Paillier Multiplication.

Proof. For correctness, we need to analyse the meaning of c in this algorithm. We
assume that the share conversion from [[c]]2 to [[c]]2P is correct and Paillier Multiplication
always gives either w = w1 + w2 or w = w1 + w2 − N . By definition, c ∈ {0, 1} and
c = c1 + c2, where

c1 = w1 mod 2 and c2 = w2 mod 2 .

We know that as both x and y are defined as being even then w also has to be even
and we have

c = w1 + w2 mod 2 .

62

We also know that N is odd and therefore w can be even if either w1 + w2 is even
which means w1 + w2 < N or if w1 + w2 is odd which gives w1 + w2 ≥ N . Hence, if
c = 0, then both wi have the same parity and w1 +w2 is even. Knowing that w has to
be even gives us w = w1 +w2 < N . On the other hand, if c = 1, then wi have different
parity and w1 + w2 ≥ N as integer is odd. Thus, we have w = w1 + w2 −N .

This clearly corresponds to how we compute w as wi = wi−N · ci mod 2P gives us

w = w1 + w2 = w1 −N · c1 + w2 −N · c2 = w1 + w2 − c ·N mod 2P .

The final modular conversion wi = wi mod P is correct according to the CRT.

Theorem 5.3.2. The ShareConv-Triples protocol in Algorithm 17 for generating Beaver
triples with simple share conversion is secure, assuming the security of binary share
conversion and Paillier Multiplication.

Proof sketch. Te security follows trivially, as this protocol is just a combination of share
conversion, Paillier Multiplication and local operations.

Protocol ShareConv-Triples works trivially well with CRT packing, if the packing
does not include modulus 2, because we require P to be odd. There is no need to
use this with B-ary packing as in that case, the randomisation in Paillier Multiplication
is defined so that we always get w1 + w2 < N and there is no need for additional
correction.

This protocol is more efficient than the previous, enabling us to get one |N |
2
− 2-

bit triple at the cost of one Paillier multiplication and error correction. However, it
proposes additional restrictions to the choice of P , which has to be odd. In terms of
achieved bits we clearly have

γlen =
|P |
|N |
≤ 1

2
.

In terms of communication we have to take into account that we do Paillier Multiplication
and share conversion, we currently use share conversion with AIR OT for comparison.
This gives us

γnet =
|P |

6 · 2|N |
≤ 1

24

because AIR OT has the same communication cost as Paillier Multiplication. Finally, in
terms of computation, we also require ciphertext operations in both Paillier Multiplication
and OT, which gives

γcomp =
|P |

10|N |+ 2(|P |+ 1) + 5
≤ 1

22
.

5.4 Comparison of proposed triple generation ideas

In a real life setting, we would like to generate a set of triples for some fixed size. This
section gives a comparison of the ideas from this chapter for the case where we are
interested in learning triples for M = 232, we analyse the case for |N | = 2048. For
packing, we assume that M = 232 for B-Triples and that we use 33-bit primes for CRT
packing. In addition, for B-Triples we define σ = 112, which gives ` = 178 and m = 11.

63

In B-ary packing we assume the same setup and basic packing with

x = Bm−1xm + . . .+ x1

y = B(m−1)·mym +Bmy2 + . . .+ y1 .

We need |B| = 2 · |M | + σ = 176 and Bm2
< N , which enables us to pack m = 3

elements, because we need m2 < 11. With CRT packing, we can pack at most 31
elements if we choose small primes, or 30 for general 33-bit primes, because we need
that 4M2 < N . In addition, for ShareConv-Triples we can not use exactly P = 232, but
we expect that |P | = 32 and therefore |2P | = 33.

Protocol γlen γnet γcomp
Paillier Multiplication 1

128
≈ 0.008 1

768
≈ 0.001 8

4129
≈ 0.002

B-ary packing 3
64
≈ 0.047 1

128
≈ 0.008 48

4129
≈ 0.012

CRT packing 31
128
≈ 0.242 31

768
≈ 0.04 248

4129
≈ 0.06

B-Triples 11
64
≈ 0.171 11

2944
≈ 0.004 352

51837
≈ 0.007

ShareConv-Triples 1
64
≈ 0.016 1

768
≈ 0.001 32

20551
≈ 0.002

CRT packing 1023
2048
≈ 0.5 341

8192
≈ 0.042 992

22471
≈ 0.044

Table 5.2: Comparison of Beaver triple generation protocols

The approximate values in Table 5.2 are given simply for making the comparison of
these results more straightforward. Trivially, Paillier Multiplication with B-ary packing
is three times more efficient than without as we can pack exactly 3 elements. However,
there is an additional 2 times gain as the output triples are always correct. Packing with
CRT is exactly 31 times more efficient that plain Paillier Multiplication. Though, the
main trouble with these two cases is that although these are the average ratios assuming
that the triple is rightfully corrected, we should also verify that they are correct. For
example, if we use Triple Verification then learning one correct triple actually has the
cost of two unverified triples.

Partial packing in B-Triples has significantly better packing count than using basic
B-ary packing which results in better ratio of γlen. The loss in other parameters is
small enough to give this algorithm precedence over Paillier Multiplication with packing.

Basic ShareConv-Triples is close to Paillier Multiplication as expected, as we always
get the correct triple, but the correction has approximately the same cost as the mul-
tiplication. The ratio for γlen of ShareConv-Triples with CRT packing is actually ideal
because 1

2
is the best limit we can achieve with our current ideas about arbitrary mod-

ulus in Paillier Multiplication. This packing ratio also affects the efficiency of network
usage as well as computations and clearly makes this the most efficient of our ideas
resulting in bounds close to the theoretical ones.

In Chapter 7, we also give results for the implementation of ShareConv-Triples with
CRT packing and B-Triples, as they are the more efficient and easier to use protocols
according to given comparison. However, Table 5.2 also indicates that we possibly
should consider only using Paillier Multiplication and CRT packing in cases where we
can increase the probability of receiving a correct triple so that we are more likely to
pass the Triple Verification check. It is especially meaningful if we need to perform
Triple Verification to check for some other possible errors as well. In the follow-up
work, we should compare the efficiency of this approach to ShareConv-Triples with
CRT packing and different OT protocols.

64

Chapter 6

Symmetric two-party computation

This section introduces our ideas for setting up symmetric two-party computation.
Currently, this section consists of the online phase, which is derived quite directly from
the share representation and ideas from the asymmetric protocol set in Chapter 4. The
question of achieving reasonably efficient precomputation of Beaver triples is currently
unsolved, but this section give hints on how we might use the protocols from Chapter 5.

6.1 Protection domain setup

We consider additive secret sharing in a ring Zp for some modulus p. Party CP i defines
a MAC key ki so that z(i) = ki · x mod p. It is clear from Section 2.1.9 that we
can obtain a secure protection scheme for a prime p and moduli with only suitably
large prime divisors. In case we use a modulus with a short bitlength, we can allow
each party to define several keys to enhance the security. This way, we could achieve
the necessary security level for any desired threshold, independently of the modulus.
However, each additional key will make the computations less efficient. It is currently
an open question, if a suitable efficient MAC algorithm could be obtained for other
moduli. All arithmetic in this scheme is with respect to the modulus p. In the following,
the security proofs give security guarantees with respect to using a prime modulus p.

We propose a share representation as

[[x]]p = 〈∆, x1, x2, z(1)1 , z
(1)
2 , z

(2)
1 , z

(2)
2 〉 ,

where x = x1 + x2 + ∆ and ∆ is the public modifier. The remaining values belong to
the MAC tags as z(1)1 + z

(1)
2 = k1 · (x1 +x2) and z

(2)
1 + z

(2)
2 = k2 · (x1 +x2). Both parties

know ∆ and, in addition, CP i has values xi, z(1)i and z(2)i .
It is straightforward to obtain an addition protocol (Addition) as both parties

can just locally add their shares to get their share of the sum. Analogously, we
get protocols for subtraction (Subtraction) and multiplication with a public value
(Constant Multiplication). Addition with a public value (Constant Addition) still only
requires modifying the common value ∆. Thus, a public value v can be seen as

[[v]]p = 〈∆ = v, v1 = 0, v2 = 0, z
(1)
1 = 0, z

(1)
2 = 0, z

(2)
1 = 0, z

(2)
2 = 0〉 .

For the sake of achieving protocols for communication with non-computing parties
IP i and RP i and precomputation, we also assume that both computing parties CP i
have defined their own Paillier keypair (pki, ski) where pki is also known by the other

65

parties and defines a modulus Ni. In addition, they have published a commitment
Encpki(ki) = ([ki])pki . The inconvenience in this is that our otherwise statistically secure
setup becomes computationally secure, depending on the IND-CPA security of the
cryptosystem that hides ki.

We occasionally use the notation CP i and CPj where the idea is that i 6= j. For
example, to specify that CP i sends something to the other party CPj where the meaning
is that both computing parties send something to the other. We occasionally use an
abbreviation CP , that should be read as computing parties, to denote that both CP i
execute some sub-protocol together.

6.2 Publishing shared values

Due to the symmetric setup of the protection domain, we can give a general publishing
protocol Publish-CP i (Algorithm 18) to open share to party CP i. Party CP i learns
the correct result if the verification succeeds and should otherwise abort the protocol.
CP i is the party who should receive the output and by CPj we mean the other party
who sends its shares. We can combine two instances of this protocol to simultaneously
declassify to both computing parties (Publish-both-CP i).

Algorithm 18 Publishing a shared value to CP i (Publish-CP i)
Data: Shared secret [[x]]p
Result: CP i learns the value x
1: CPj sends xj and z(i)j to CP i
2: CP i verifies z(i)1 + z

(i)
2 = ki · (x1 + x2)

3: return CP i outputs x1 + x2 + ∆

Theorem 6.2.1. Protocol Publish-CP i for publishing a shared value to one party is
correct.

Proof. For correctness, we need that x = x1 + x2 + ∆, which is trivially true in case
the verification process is correct. In the case of honest participants, we know that the
verified equations must hold by the definition of the shares.

Theorem 6.2.1. Protocol Publish-CP i for publishing a shared value to one party is
computationally secure with additional statistical 1

p
error probability.

Proof sketch. This proof is analogous to the part Publish-CP1 in Theorem 6.2.1. In the
asymmetric setting, CP1 also verified the correctness using MAC tags. The computa-
tional requirement follows from the fact that CPj knows ([ki])pki .

As in the asymmetric case, we have a simple possibility that we declassify an element
to the computing parties, who check the MAC and then forward the declassified results
to the result parties RP i. The result parties only have to verify that both computing
parties forwarded them the same declassification result and accept the output. Thus,
we can easily obtain the protocol Publish-CP&RP i. The security and correctness of
this protocol result from those of Publish-CP i protocol. This is an easy way to make
the results publicly known, a way to open shares only to RP i is discussed later in
Section 6.4.

66

6.3 Receiving inputs from the input party

This section defines a standalone protocol to receive inputs from IP i. We do not yet
have a Publish-RP i protocol, therefore we can not use the common Classify-IP i protocol
from Chapter 3 and need to define something independent from other protocols. Our
Classify-IP?i protocol is given in Algorithm 19.

Algorithm 19 Receiving inputs from IP i (Classify-IP?i)
Data: IP i has a secret x
Result: CP i have a shared secret [[x]]p

1: Round: 1
2: CP i fixes ∆ = 0
3: IP i generates x1 ← Zp, z(2)1 ← ZN2 , z

(1)
2 ← ZN1 , r1, r2 ← Z∗N

4: IP i computes x2 = x− x1 mod p
5: IP i computes c1 = Encpk1(k1)

x2 · Encpk1(−z
(1)
2 , r1)

6: IP i computes c2 = Encpk2(k2)
x1 · Encpk2(−z

(2)
1 , r2)

7: IP i sends xi, z(j)i , ci, rj to CP i
8: Round: 2
9: CP i computes z(i)i = ki · xi + Decpki(ci) mod Ni to learn [[z(i)]]Ni

10: CP i computes c∗j = Encpkj(kj)
xi · Encpkj(−z

(j)
i , rj) and send to CPj

11: Round: 3 (share conversion)
12: CP collaboratively convert [[z(1)]]N1 to [[z(1)]]p and [[z(2)]]N2 to [[z(2)]]p using

ShareConv
13: Verification:
14: CP i checks that ci = c∗i
15: CP i notifies IP i about the verification outcome

The idea of this algorithm is similar to some tricks from the triple generation algo-
rithms. Namely, the input party uses the encryptions of the MAC keys to share the
tags modulo N and the computing parties convert them to correct modulus M .

Theorem 6.3.1. The protocol Classify-IP?i for receiving inputs from IP i is correct,
assuming the correctness of ShareConv.

Proof sketch. The correctness of x = x1 + x2 mod p is trivial from the definition. Sim-
ilarly, the correctness of z(i) = ki · x mod Ni is straightforward from the algorithm
description. Furthermore, the correctness of the verification is trivial, as by definition
c = c∗ if all parties are honest.

For security, we need that neither the computing parties nor the input party can
cheat during the protocol. Cheating on the side of input party means that it tries
to give inconsistent share representations. On the side of computing parties cheating
means that they try to modify the shares they received. However, as in the asymmetric
case, we still have the limitation that IP i can not collude with either CP i.

Theorem 6.3.2. The protocol Classify-IP?i for receiving inputs from IP i is computa-
tionally secure against corrupted CP i and perfectly secure against corrupted IP i, if the
adversary is allowed to corrupt at most one party, assuming a computationally secure
share conversion protocol.

67

Proof sketch. Similarly to the asymmetric case, the ideal functionality of this protocol
receives x, x1, z

(2)
1 and z(1)2 from the IP i. It then fixes the remaining z(1)1 and z(2)2 and

forwards the shares to the computing parties. The computing parties can either accept
or reject the shares. If either party rejects then the output of all parties is ⊥, otherwise
the computing parties learn their shares and IP i learns that the input was received
correctly.

The simulator for a corrupted CP i at first receives xi, z(1)i , and z(2)i from the TTP.
It then computes ci = Encpk(z

(i)
i) · ([ki])−xipki

= Encpk(z
(i)
i − ki · xi) and picks a rj as an

honest IP i would. The simulator forwards xi, z
(j)
i , ci and rj to the corrupted CP i as

a message from the IP i. By definition, CP i can compute z(i)i as originally defined by
the TTP. In addition, it forwards ci also as a message from the other computing party
CPj. For the share conversion, it can act as an honest party by picking a random input
for the case where it has to send the initial query. In addition, it can simulate the
conversion for the case where it is the sender. Finally, the simulator gets the output
Continue or Failure from the corrupted CP i and forwards this to the TTP. Clearly, the
simulator can make the output shares of CP i the same as they would be in the ideal
world and the output of CPj is also the same, therefore, the outputs of the real and
simulated ideal world coincide.

The simulator for the corrupted IP i receives all the values xi, z
(j)
i , ci, ri from the

IP i. It checks that ci = ([ki])
xj
pki

Encpk(−z(i)j , rj) for both ci and forwards x, x1, z
(2)
1 and

z
(1)
2 to the TTP, if the check succeeds. In this case, it gives the output Continue or
Failure, that it receives from the TTP, back to the corrupted IP i. Otherwise, if the
check did not pass, it gives Failure to both the corrupted IP i and the TTP. Clearly,
the check that the simulator does for ci is sufficient to check that the IP i gives correct
inputs. In addition, the final states of the ideal and real world coincide as in case the
sharing succeeds the shares are chosen by the IP i and parties have also seen these
shares in case the sharing does not succeed.

This protocol does not give the anti-framing property, because in the end the com-
puting parties have not verified that the other party has the value z(i)i that it needs to
very the tag. To achieve this property we must include corresponding zero-knowledge
proofs as a part of this protocol. We should also include the proofs that ci is correctly
computed in order to achieve security against collaborating pairs CPj and IP i.

We can use the ShareConv protocol in Algorithm 20 for share conversion. This is
intended for the case introduced in Section 5.3.2 where we either have z = z1+z2 mod p
or z = z1 + z2 −N mod p, which is exactly what we have in the Classify-IP?i protocol.

Algorithm 20 Share conversion from [[z]]N to [[v]]p (ShareConv)
Data: Shared secret [[z]]N
Result: Shared secret [[v]]p, where z = v

1: CP i computes ti = 2 · zi mod N
2: This ensures that t = t1 + t2 as an integer is even
3: CP i computes t∗i = ti mod 2
4: CP collaboratively perform simple share conversion from [[t∗]]2 to [[c]]p,
5: This can be done with OT, as discussed in Section 5.3
6: CP i computes ti = ti − ci ·N mod p
7: CP i computes vi = 2−1 · ti mod p

68

Theorem 6.3.3. The protocol ShareConv in Algorithm 20 for converting [[z]]N to [[v]]p
is correct and secure, assuming secure share conversion from binary to any modulus.

Proof sketch. The idea of computing ti = 2 · zi mod N is to ensure that t1 + t2 share
an even number [[2z]]N . This enables us to do the share conversion using OT from
Section 5.3 where, in the end, computing parties have a shared secret c = 0, if the
parity of t1 and t2 was the same and c = 1 in other case. Here, different parity
indicates that t1 + t2 ≥ N and same parity ensures t1 + t2 < N . By computing
ti = ti − ci · N mod p the parties learn [[2z]]p, where 2z = t1 + t2 mod p. Trivially,
computing vi = 2−1 · ti mod p gives [[v]]p, where v = z mod p. The correctness of this
protocol follows from the correctness of the general share conversion idea.

The security clearly results from the security of the conversion from [[t∗]]2 to [[c]]p.
According to Section 5.3.1, it depends on the security of the oblivious transfer.

6.4 Publishing a secret to the result party

Previously, we defined a protocol for declassifying a secret to both computing and result
parties (Publish-CP&RP i). However, we also have to satisfy the case where we need
to open the secret privately only to RP i. Algorithm 21 defines protocol Publish-RP i
that achieves this by combining Classify-IP?i and Publish-CP&RP i in a very general
manner.

Algorithm 21 Publishing a shared value to RP i (Publish-RP i)
Data: secret [[x]]p
Result: RP i learns x
1: RP i shares a uniformly random value y using Classify-IP?i
2: CP compute [[w]]p = [[x]]p + [[y]]p
3: CP and RP i execute Publish-CP&RP i to learn w = x+ y
4: return RP i corrects x = w − y

We could probably use a simpler version of Classify-IP?i for this purpose, because
the verification of correct sharing is actually a part of Publish-CP&RP i. Hence, we
could omit all the verification steps from Classify-IP?i . The idea of this protocol is very
simple, as the value y randomises the published result w and, thus, w reveals nothing
about x to CP i.

Theorem 6.4.1. The Publish-RP i protocol for declassifying shared secrets to result
parties is correct and as secure against a cheating CP i as Publish-CP&RP i.

Proof sketch. Both, correctness and security, result from the properties of the used sub-
protocols Addition, Classify-IP?i and Publish-CP&RP i. The correctness of the output
x = w − y follows trivially from the definition w = x+ y.

6.5 Precomputation

We do not have a full precomputation phase for this protection domain at the moment.
We introduce a protocol for generating random shares and discuss how the Beaver triple
protocols from Chapter 5 could be used to achieve the necessary share representation
and security guarantees.

69

6.5.1 Random share generation

Generating MAC tags is actually the same task as generating Beaver triples, only the
inputs are slightly different. An additively shared secret that needs the tag can be used
as one of the random inputs. The second is clearly the key so that the third element
of the triple is actually the tag value.

Although the key is not kept in the form of additive shares, we can assume that
CP i has the share as the value of the key ki and CPj has the share value as 0. This, as
well as the fact that we always use the same ki for all shares, allows us to somewhat
simplify the triple generation protocols, but the core ideas remain the same. All in
all, Beaver triple generation protocols can also be the key for generating protection
mechanisms to shares and thus, to generating single random values as well as triples.

More specifically, Classify-IP?i already introduced a way, how a third party can
generate a valid share representation. The value x is not known when the computing
parties generate a random value, but they could collaborate to share the tags modulo
N as shown in Algorithm 22. Afterwards, they could do the same conversion as in
Classify-IP?i .

Algorithm 22 Generating a random share (Singles)
Data: No input
Result: CP i have a shared secret [[x]]p for uniformly random x← Zp
1: Round: 1
2: CP i fixes ∆ = 0
3: CP i generates xi ← Zp, z(j)i ← ZNj

4: CP i computes and sends cj = Encpkj(kj · xi − z
(j)
i) to CPj

5: Round: 2
6: CP i computes z(i)i = ki · xi + Decpki(ci) mod Ni to learn [[z(i)]]Ni

7: CP collaboratively perform ShareConv to get [[z(1)]]p from [[z(1)]]N1 and [[z(2)]]p
from [[z(2)]]N2

Theorem 6.5.1. The Singles protocol for generating random shares with correct tags
is correct.

Proof sketch. We need that z(i)1 +z
(i)
2 = ki · (x1 +x2) mod p. We assume the correctness

of the share conversion and only show

z
(i)
1 + z

(i)
2 = ki · (x1 + x2) mod N .

In addition, we assume that ki · (x1 + x2) < N . We know that, by definition

z
(i)
i = ki · xi + ki · xj − z(i)j mod N ,

where it trivially follows that z(i) = ki · x mod N .

Similarly to the asymmetric version of the Singles protocol, we would actually need
a zero-knowledge proof that the messages ci are correctly formed. Currently, we could
not define a simulator for the ideal version of the Singles protocol where the parties
input xi because the messages that the parties send are independent of their inputs.
The ideal functionality that we would like to achieve is that the computing parties
input xi to the TTP who computes all the tag values and gives them back to the
computing parties.

70

Theorem 6.5.2. The communication of the Singles protocol for generating random
shares with correct tags is simulatable and the final value of x is uniformly distributed
in Zp, assuming computationally secure share conversion.

Proof sketch. The communication in the generation part of this protocol is clearly
simulatable as by definition ci is an encryption of a random value that does not depend
on the protocol inputs and can be simulated by sending an encryption of a random
value. The share conversion part can be simulated using the corresponding simulator.

Finally, if at least one participant is honest, then x is a uniformly random element
in Zp. This holds, because if one participant CP i is honest, then xi ← Zp is uniformly
distributed in Zp and so is x1 +x2, because party CPj does not receive any information
about the value of xi.

Differently from the asymmetric case this Singles protocol does not specify verifi-
cation and therefore we can not be sure that the share [[x]]p is correctly formed. This
means that we can not get the anti-framing property, but does not make the protocol
less secure as we would discover the wrongly formed share during the publishing. We
could add some verification as, for example, we could generate the values in pairs. For
each pair, the parties would randomly choose one value that they open and where both
CP i show that they know xi and z

(j)
i together with the randomness that they used

to compute cj. That means that with probability 1
2
we could notice cheating in this

protocol. A more general solution would be to add a zero-knowledge protocol about
the correctness of ci.

6.5.2 Beaver triples generation

As previously, we mainly check the correctness of the computations during the opening
phase, where the information-theoretic security of the MAC ensures the correctness
of the verification. We can use the protocol Triple Verification to ensure that both
the multiplicative relation of the triple holds and the MAC tags have been computed
correctly. The security of this check results from the security of the triple verification
and the security of the MAC algorithm.

One way to generate valid Beaver triples with all protection mechanisms would be
to at first generate two random values x and y together with MAC tags as in Singles
protocol. Then we could choose a Beaver triple protocol from Chapter 5 and run this
with input shares as additive shares of x and y to learn the additive shares of w = x ·y.
It would require some extra care to ensure that the Beaver triple protocol defined in
the semi-honest model protects the privacy of the inputs even in the presence of active
adversaries. Finally, the tags could be generated for w similarly to the tag generation
the the Singles protocol. This process should be finished with a full Triple Verification
protocol to ensure that the triples really have the multiplicative relation.

It currently seems most beneficial to use the basic Paillier Multiplication protocol with
CRT packing for modulus M that is k-bits shorter than the maximal length allowed
by M2 < N . This way, we can actually always optimistically correct the result w from
the Paillier Multiplication as w = w1 + w2 −N mod M and with probability more than
1 − 2−2k we have a correct w modulo M . This probability results from the fact that
with probability 1− 2−2k we pick w2 ← ZN such that w2 > xy and compute w1 > xy,
giving w1 + w2 > N . After generating the protection mechanisms, we anyway have to
perform Triple Verification the check the tags which also checks if the parties received

71

a correct w mod pi. The other possibility would be to use ShareConv-Triples with an
efficient OT protocol. It would require testing the corresponding implementation in
order to verify which can be more efficient.

6.6 Efficiency of the protocols

This section analyses the theoretical cost of the proposed protocols. We have two
important criteria: (1) computational cost and (2) communication cost. Figure 6.1
illustrates all our protocols for the symmetric protocol set and also marks the place for
the Triples protocol that was not specified.

Addition

Subtraction

Constant Multiplication

Constant Addition

Singles TriplesF Multiplication

Publish-CP i

Publish-both-CP i

Classify-CP i

Publish-CP&RP i

Classify-IP?i Publish-RP i

Figure 6.1: The hierarchy of the protocols for the symmetric setup

For simplicity of the analysis, we assume that both parties have chosen Paillier
keys of the same length |N1| ≈ |N2|. We need to consider three different classes
of operations: (1) operations on additive shares of length |p| bits, (2) operations on
Paillier ciphertexts of length 2|N | bits, and (3) operations of Paillier plaintext space of
length |N | bits.

6.6.1 Computational cost

Differently from the asymmetric setting, most of the online protocols do not need
any multiplications. Actually, the only computation protocols requiring multiplica-
tion operations are Multiplication, Constant Multiplication and Publish-CP i, whereas
Multiplication only uses multiplication operations from the Constant Multiplication and
Publish-CP i protocols. In all these cases, we only use |P | bit operands and get the
result of the same length. However, the protocols to communicate with third parties
add some complexity because there we also have to operate with ciphertexts of length
2|N | bits and plaintext space of |N | bits. Out of these, we only analyse Classify-IP?i
because Publish-RP i combines this with Publish-both-CP i and uses no additional mul-
tiplications. Finally, we also include the Singles precomputation protocol.

72

Party Length ConstMult Publish-CP i Classify-IP?i Singles

CP i
|p| 4 1 0 0
|N | 0 0 1 1
2|N | 0 0 3|N |+ |p|+ 1 2|N |+ |p|+ 1

IP i
RP i

|p| - - 0 -
|N | - - 0 -
2|N | - - 2|N |+ 2|p|+ 2 -

Table 6.1: The computational cost of protocols as a number of multiplications

As in the asymmetric setting, we assume that the Paillier encryption and decryption
have the computational complexity of |N | multiplications on elements of length 2|N |.
Addition under encryption has the cost of one multiplication and Encpk(m)k has the
cost of |k| multiplications.

Table 6.1 summarises the computational complexity of our independent protocols.
The complexity for Constant Multiplication results from the fact that all share elements
have to be multiplied with the public value. These protocols are symmetric for the
computing parties and the third party only participates in Classify-IP?i . However, for
Publish-CP i, we mean that only CP i, to who the value is opened to, has to do this
amount of work. From this we can see that actually the protocol Multiplication would
only require 11 multiplications of length p.

The computational complexity of Classify-IP?i for IP i results from the computation
of tag values under encryption where Encpk(k1)

x requires approximately |x| multipli-
cations, which we estimate by |p|. It is similar for the Singles protocol, only that the
work is done by CP i. We exclude the cost of share conversion from these protocols as
it mainly depends on the complexity of the chosen oblivious transfer protocol.

It is easy to see that the need to use encryption makes Classify-IP?i and Singles
very expensive compared to the online computation protocols. In addition, compared
to the asymmetric protocol set we have a very cheap Publish-CP i protocol.

6.6.2 Communication cost

The protocols that require communication are Publish-CP i, Classify-CP i, Multiplication,
Singles, Classify-IP?i and Publish-RP i. However, Multiplication and Classify-CP i only
require communication as part of the Publish-CP i protocol and Publish-RP i is just a
combination of Publish-CP i and Classify-IP?i . Thus, it is reasonable to only analyse
the communicational complexity of Publish-CP i, Classify-IP?i and Singles.

Party Length Publish-CP i Classify-IP?i Singles

CPj
|p| 2 2 2
|N | 0 0 0
2|N | 0 1 1

IP i
RP i

|p| - 2 -
|N | - 4 -
2|N | - 2 -

Table 6.2: The communication cost of the protocols as the number of messages of
different length

Table 6.2 gives an overview of the communication complexity of the Publish-CP i,
Classify-IP?i and Singles protocols. The lines for Publish-CP i should be read so, that in

73

this protocol, CPj has to send that many messages. The workload of the computing
parties is equal for the other protocols and they both have to send the given amount of
messages. Third parties have to send a given amount of messages in total and exactly
half of those are sent to each CP i.

Protocols Classify-IP?i and Singles exclude the cost of the OT as the protocol could
be used with different initialisations of OT or possibly with other binary share conver-
sion ideas than our idea with OT.

Analogously to the computational cost the usage of a cryptosystem also makes the
communication requirements of Classify-IP?i and Singles to stand out. Especially, since
the additional cost of the share conversion further increases the amount of messages.
However, from the straightforward relatively low cost of Publish-CP i we can also de-
rive that multiplication and Classify-CP i are communication efficient protocols in this
protection domain.

74

Chapter 7

Implementation

This chapter introduces the details of our implementation as well as the benchmark
results of the proposed protocol sets and some precomputation ideas.

7.1 Implementation platform

Our protocols are part of Sharemind 3 which is implemented in C++ as are our
protection domains. Sharemind currently uses RakNet [50] as a network layer and
Boost [13] for multi-threading and configuration. We used a popular free C++ cryp-
tography library Crypto++ [20] for the functionality of the elliptic curves. In addition,
the GNU Multiple Precision library (GMP) [34] was used to get unbounded integers
needed to represent shares and ciphertexts in our implementation. The implementation
of the Paillier cryptosystem is similar to [48], but ported to GMP.

7.2 Secure computation capabilities

The asymmetric protocol set is implemented as a Sharemind protection domain kind
defining share operations for addition, subtraction and multiplication. In addition,
there are special protocols to multiply a share with a public value and to add a pub-
lic value to the share. All these protocols have been implemented as operations on
vectors applying the suitable function component-wise. Besides these online protocols,
the asymmetric protection domain also contains protocols for precomputing random
values and multiplicative triples. These protocols are executed as needed to keep some
threshold of precomputations available. In the future we might also consider the re-
stricted configuration where all triples needed to execute a previously define algorithm
are generated beforehand and not replaced during the computations.

Currently, the controller side of this PD, consisting of communication with non-
computing parties, has not been implemented because the infrastructure of Share-
mind 3 does not yet fully support this functionality. It is future work to implement
these as well as a full setup phase. Current implementation is sufficient to give insights
to the usability of this PD.

The symmetric protocol set only includes the online protocols for working with the
data. This includes classifying, publishing, addition, subtraction, and multiplication on
the shares, as well as adding or multiplying a shared value and a public constant. This
online phase is accompanied by an insecure precomputation phase to produce singles

75

and triples necessary for testing online computations. It is future work to specify
and implement a real precomputation phase. It is reasonable to test the online phase
independently of the precomputations to see if it proves efficient enough to continue
with these ideas. Similarly to the asymmetric case, the protocols to communicate with
non-computing parties have not been implemented.

Two of the most promising protocols for Beaver triple generation were also imple-
mented for testing purposes. At the moment they do not form a full precomputation
phase for any PD. The B-Triples protocol is implemented with packing as built to the
algorithm description. Protocol ShareConv-Triples is implemented in a general man-
ner that is independent of the packing and tested using packing with CRT. We use a
computationally private information retrieval (CPIR) [38] protocol to perform share
conversion in ShareConv-Triples. CPIR is suitable for replacing OT in the semi-honest
setting where our triple generation currently works. We used a 1-out-of-2 initialisation
from [41] with the Paillier cryptosystem that is more communication efficient than AIR
OT from Algorithm 16.

7.3 Performance measurements

The tests were executed on the Sharemind cluster where each miner ran in a different
machine and they were communicating over LAN. Each of the cluster machines had
48 GB of RAM, two Intel Xeon X5670 CPUs and were connected with 1 GB/s LAN
connection.

All the given results are average running times of the operations over at least ten
repeated tests, more tests were used for faster operations. Column length denotes the
length of the input and output vectors, other columns in the following tables denote
various implemented protocols.

All the experiments were executed using a SecreC script. We recorded the running
times of each independent execution of separate operations. These results are fixed
at a miner level, thus allowing us to get separate measurements from both miners.
The latter is mostly important for the online protocols of the asymmetric protocol
set. It is important to note that the precomputations are running in parallel with
online operations during the measurements of the online phase. This mostly affects
the multiplication operation because it uses up a lot of precomputed triples that need
to be replaced.

7.3.1 Online protocols

This section analyses the time requirements of the online phase of the asymmetric and
symmetric protocol sets. We use the asymmetric setting with 2048-bit key and give
the symmetric setting for 2048-bit prime as a comparison to that, as they represent
similar data types. In addition, we compare the efficiency of the two computing parties
in the asymmetric setting and give a 65-bit version of the symmetric PD.

Tables 7.1 and 7.2 illustrate the time requirements of the two computing parties in
the asymmetric setting. Theoretical analysis in Section 4.6 indicated that this setup
results in unbalanced workload for the two computing parties, and our measurements
also reflect this. Local protocols of CP1 are two to three times faster than the same
protocols for CP2 who also has to compute with ciphertexts. There is less difference
for publishing or multiplication protocols as those are collaborative and it is likely that

76

Length Publish Add Subtract ConstAdd ConstMult Multiply
1 21.28 0.03 0.06 0.002 0.15 218.57
10 197.67 0.10 0.41 0.008 1.37 572.57
100 1974.02 0.62 3.93 0.037 13.49 4135.15
1000 19 732.16 6.27 38.87 0.170 134.19 39 866.97
10000 197 276.02 72.75 400.92 3.652 1343.81 392 461.09

Table 7.1: Time requirements of asymmetric computation protocols for party CP1 in
Sharemind (milliseconds)

Length Publish Add Subtract ConstAdd ConstMult Multiply
1 24.76 0.02 0.11 0.003 0.47 222.54
10 210.76 0.15 0.98 0.004 4.65 599.92
100 2103.54 1.38 9.64 0.025 46.19 4399.50
1000 20 919.80 13.92 96.69 0.227 461.83 42 510.33
10000 209 190.81 172.94 989.36 5.749 4613.70 418 776.28

Table 7.2: Time requirements of asymmetric computation protocols for party CP2 in
Sharemind (milliseconds)

CP1 has to wait until CP2 finishes some computations and answers on the network,
before the parties can continue. Time requirements of both miners demonstrate a
linear growth as the test inputs increase, illustrating that we actually do not gain
much from vectorisation and that the computations are more likely to be CPU than
network bounded.

The asymmetric setting can be compared to the symmetric setting with a 2048-bit
modulus. Comparing the asymmetric results in Tables 7.1 and 7.2 to those of the
symmetric protocols in Table 7.3 reveals that the gain from the symmetric protocol is
significant. The declassifying and, thus, also multiplication protocols have gained most
as there are no more encryption operations involved in the symmetric setting.

Length Publish Add Subtract ConstAdd ConstMult Multiply
1 10.28 0.01 0.01 0.003 0.01 110.48
10 10.56 0.03 0.05 0.004 0.03 112.36
100 9.94 0.26 0.39 0.024 0.24 127.89
1000 11.27 2.71 3.89 0.175 1.41 223.09
10000 22.65 34.83 48.63 2.534 12.27 1147.97

Table 7.3: Time requirements of symmetric computation protocols for 2048-bit modulus
in Sharemind (milliseconds)

A new trend in the symmetric setting is that the times to declassify a value or
multiply shares do not increase linearly as the input size grows, at least for small
input sizes. This probably indicates that these protocols depend more on the network
speed than computation power. The sudden growth in multiplication cost for length
10000 can be explained by the fact it has to perform several Publish operations and the
network capacity may become a bottleneck. In addition, it requires as many triples as
the input length and, thus, there is continuous precomputation in the background to
replace those triples. These trends can be especially well seen from Table 7.4 which
also includes longer input lengths.

The comparison of Table 7.3 to Table 7.4 shows, that the considerable differences
in the data type size affect the running time less than we might expect. According

77

Length Publish Add Subtract ConstAdd ConstMult Multiply
1 10.51 0.02 0.01 0.005 0.01 55.79
10 10.27 0.04 0.02 0.007 0.01 56.76
100 10.16 0.23 0.19 0.023 0.05 54.33
1000 11.01 1.37 1.75 0.188 0.62 65.84
10000 24.77 13.56 17.84 0.886 4.49 203.48
100000 102.27 146.48 185.64 10.462 46.20 1880.76
1000000 846.05 1467.25 1682.50 97.189 460.60 14 084.73

Table 7.4: Time requirements of symmetric computation protocols for 65-bit modulus
in Sharemind (milliseconds)

to Tables 7.3 and 7.4, computation with 65-bit modulus in only two to three times
faster than computing with 2048-bit modulus. The difference between using 65-bit
and 33-bit modulus illustrated the same trend where 33-bit modulus is only slightly
faster than 65-bit. The surprising result that ConstMult is faster than Add results from
the specifics of our setup where the public value is a uniformly random 32-bit element,
which is small compared to general tested values. Measuring the symmetric setup with
33-bit prime gives a better estimate where ConstMult is actually approximately three
times slower than Add.

These results clearly show that the symmetric setting can be more efficient than the
asymmetric one, as expected. However, the symmetric PD can only be made usable
if there also exists a reasonably efficient precomputation phase. In conclusion, the
protocol set for the symmetric setup is a reasonable focus for future developments.

For simple comparison, in traditional Sharemind three miners PD multiplication
of vectors of length 10000 took less than 100 milliseconds and was close to that also for
shorter input lengths of 32-bit secrets [12]. Our asymmetric protocol set is significantly
slower than that, but actually our symmetric protocol set can show similar speeds
for 65 or 33-bit moduli. The main difference here is of course that [12] does not
do precomputations. Covertly secure SPDZ [23] for two-parties reports doing 64-bit
multiplications of input length 10000 in about 76 milliseconds for one thread and
vectorised inputs. Our symmetric protocol set is currently slightly slower than that,
but seems to be a good step from the asymmetric version.

7.3.2 Precomputation protocols

This section analyses the behaviour of our precomputation protocols. Table 7.5 gives
the results of the time requirements of the precomputation of the asymmetric protection
domain. The precomputation phase of the asymmetric protocol set is clearly less
efficient than the online phase. In addition, measured results also indicate that the
zero-knowledge proofs are the most expensive part of these protocols as also noted in
Section 4.6. The proofs take approximately 4

5
of time in the singles protocol and 3

4
of

total time in the triples protocol. We need approximately 1.6 seconds for one 2048-bit
triple, whereas SPDZ [23] can prepare one 128-bit triple in 0.4 seconds.

Protocol B-Triples is used exactly as given in its protocol description in Algorithm 15
as packing smaller data types was native to this algorithm. The ShareConv-Triples from
Algorithm 17 is benchmarked using the packing idea based on the Chinese remainder
theorem. We only consider packings where all packed moduli are of equal bit length
for simpler exposition and comparison. We chose 65-bit and 33-bit moduli as they are

78

Length Singles with ZK Triples with ZK Singles Triples
1 315 1852 42 529
10 2335 15 786 402 4699
100 22 492 154 853 4014 46 487
1000 226 923 1 544 571 40 257 464 853
10000 2 233 351 15 464 414 402 658 4 678 799

Table 7.5: Time requirements of asymmetric precomputation protocols in Sharemind
(milliseconds)

sufficient to keep traditional 32-bit or 64-bit integers in them.
The CRT packing enables us to pack 15 elements of length 65-bits and 31 elements

of length 33-bits into one ciphertext for 2048-bit modulus. This also explains the
phenomena in Table 7.6 that lengths 1 and 10 take the same time for Algorithm 17—
in both cases they are packed into one ciphertext and the main algorithm has the
same workload. Difference between packing efficiency results in the approximately
double difference between efficiency of 33-bit and 65-bit versions of these algorithms.
Theoretical analysis in Section 5.4 showed that ShareConv-Triples is the most efficient
of our proposals and the measurements clearly illustrate this. ShareConv-Triples can
prepare about 186 packed 65-bit triples in a second, which is approximately 12 triple
generation operations. In comparison, this means that ShareConv-Triples can prepare a
semi-honestly secure 65-bit triple in 0.005 seconds, and SPDZ can prepare an actively
secure 64-bit triple in 0.027 seconds [23].

B-Triples ShareConv-Triples
Length 33-bit 65-bit 33-bit 65-bit

1 63 64 152 155
10 287 311 153 153
100 2617 2767 398 661
1000 25 686 27 199 2789 5458
10000 256 775 270 903 26 948 53 674

Table 7.6: Time requirements of Beaver triple protocols with packing in Sharemind
(milliseconds)

For linear packing in B-Triples, we use a security constant σ = 112, which enabled
us to pack 11 elements of 33-bits and 8 elements of length 65-bit into 2048-bit of
plaintext space. Both this packing inefficiency and considerably higher requirements
on the network made this less efficient than ShareConv-Triples. These packing counts
also explain the relatively small difference in runningtimes for 33 and 65-bit cases.
For both of these moduli, CP1 has to encrypt all length elements and the gain of
packing only comes from a shorter result it gets back from CP2 which also lessens the
amount of decryptions. Hence, the effect the packing has on the overall performance
is substantially smaller than for packing with CRT, but the latter gain most from
reducing the amount of necessary encryption and decryption functions.

In conclusion, it seems realistic to combine one of our Beaver triple protocols with
CRT packing and share conversion to use it as full precomputation in the symmetric
setting. The main open issue is defining efficient general share conversion that applies
to additive shares and protection mechanisms.

79

Chapter 8

Conclusions

Secure multi-party computation is a general solution for privacy preserving data pro-
cessing tasks. This thesis explores the subcase of SMC for two computing parties with
the additional benefit that the parties can detect faults in the computation results. The
main tools used to achieve this are an additively homomorphic cryptosystem, additive
secret sharing and message authentication codes. We introduced a popular computa-
tion model that divides work to preprocessing and online phase. The latter is used
to prepare some randomness that helps to speed up computations in the online phase,
that performs all desired computations.

The goal of this thesis is to propose and implement new protocols for secure two-
party computation for both online and precomputation phase. We concentrate mostly
on common operations as sharing and publishing secret data as well as addition and
multiplication. The latter is commonly implemented using Beaver triples, that are
prepared in the offline phase. One of the important goals of our protocol sets is to define
efficient generation of Beaver triples using an additively homomorphic cryptosystem.

The main result of this thesis is the introduction of three different flavours of setup
for secure two-party computation, including asymmetric, symmetric and shared key
setup. Their theoretical differences are stressed by the exact initialisation and imple-
mentation of the first two. For our initialisation, the symmetric setup is both more
efficient and more flexible than the asymmetric setting. The shared key setup is pre-
sumably more efficient than the symmetric one, but adds additional complexity to
verify the correctness of both computing parties.

The main goal of the Beaver triple generation protocols is to maximise the total bit
length of the triples we can obtain from one multiplication using the Paillier cryptosys-
tem. The main difficulties are coming up with a good way to pack smaller elements
into the plaintext space of the Paillier cryptosystem and modifying the multiplication
with the Paillier cryptosystem to give correct results for other moduli than the Pail-
lier modulus. Two possibilities to pack smaller values into the plaintext space include
linear packing and packing using the Chinese remainder theorem. The former is useful
because it proposes no limits to the packed types, but the latter can be more efficient.
We can also correct the results of the Paillier multiplication by analysing the potential
outcomes of the protocol and collaboratively deciding which of those happened.

Current results show that actively secure multi-party computation is significantly
slower than passively secure versions. However, our results indicate that fully imple-
mented symmetric protocol set could be close to the performance of the SPDZ frame-
work that is the current leader in actively secure multi-party computation frameworks.
In addition, achieving security against malicious adversaries can be very important for

80

data mining tasks that have important economical or societal outcomes. Therefore,
in many cases the extra time consumption is a reasonable trade-off for the additional
layer of security.

Future work should extend the symmetric setup to include a full precomputation
phase and add new operations to both introduced protocol sets. In addition, an im-
plementation of the shared key setup using precomputation with Paillier cryposystem
would provide an interesting comparison to the existing asymmetric and symmetric
setups. Furthermore, the protocols for collecting inputs or returning outputs should
be implemented to allow us to use these protection domains in real world applications.
Likewise, it would be important to fully specify the universally composability of each
protocol as well as define protocols for setting up the necessary keys of the protection
domains.

81

Kahe osapoolega turvaline ühisarvutus: efektiivne Be-
averi kolmikute genereerimine

Magistritöö

Pille Pullonen

Resümee

Turvaline ühisarvutus võimaldab salajaste sisenditega funktsioone väärtustada ning
seeläbi lahendada turvaliselt mitmeid andmetöötlusülesandeid. Passiivselt turvaline
ühisarvutus kindlustab, et kui kõik osapooled järgivad protokolli, siis jäävad sisen-
did salajaseks ning väljundid on õiged. Aktiivne turvamudel tagab privaatsuse ka siis,
kui osapooled ei käitu ausalt ning võimaldab kontrollida saadud tulemuste korrektsust.

Käesolev töö uurib turvaliste ühisarvutuste erijuhtu, kus on kaks arvutavat osa-
poolt. Neile lisaks võib olla ka kolmandaid osapooli, kes annavad arvutusele sisendeid
või soovivad saada tulemusi. Töö peamiseks eesmärgiks on kirjeldada aktiivses mudelis
turvalisi kahe osapoolega protokollistike ning implementeerida need turvalise ühisar-
vutuse raamistikus Sharemind. Meie protokollid on jagatud kahte osasse: ettearvu-
tamine ning tööfaas. Efektiivse ettearvutamise saavutamiseks vaatleme eraldi, kuidas
genereerida Beaveri kolmikuid, mis võimaldavad tööfaasis teha kiiret korrutamist.

Kahe osapoolega ühisarvutuse ülesseadmiseks on vähemalt kolm erinevat võimalust:
asümmeetriline, sümmeetriline ja jagatud konfiguratsioon. Käesolev töö keskendub ka-
hele esimesele ning defineerib kummagi jaoks konkreetse protokollistiku näite. Kolmas
on olemas meie tööd oluliselt mõjutanud SPDZ protokollistikus. Meie põhiline töö-
riist aktiivses mudelis turvalisuse saavutamiseks on sõnumiautentimiskood, mille abil
kontrollitakse salastatud väärtuste korrektsust. Ebasümmeetrilises protokollistikus ka-
sutame lisaks ka kinnistusskeeme ja nullteadmustõestusi. Mõlemad protokollistikud põ-
hinevad aditiivsel ühissalastusel. Nii meie teoreetiliste arutluste kui implementatsiooni
järgi on sümmeetriline protokollistik efektiivsem ning paindlikum kui ebasümmeetrili-
ne. Eelkõige on sümmeetriline praktilisem, sest võimaldab vähese vaevaga defineerida
erineva suurusega andmetüüpe.

Ettearvutamise osas keskendusime eelkõige Beaveri kolmikute ehk juhusliku väärtu-
sega multiplikatiivsete kolmikute (a, b, c) genereerimisele, kusjuures a, b on juhuslikud,
ning c = a · b. Kasutame selleks aditiivselt homomorfset Paillier’ krüptosüsteemi ning
klassikalist algoritmi aditiivselt jagatud andmete korrutamiseks Paillier’ krüptosüstee-
mi kasutades. Peamiseks väljakutseks on selle algoritmi kohandamine erinevatele and-
metüüpidele sõltumata krüptosüsteemi jaoks defineeritud moodulist. Eelkõige vaatame,
kuidas garanteerida, et korrutamisprotokoll annaks sõltumata moodulist korrektseid
tulemusi. Selgub, et võimalikud tekkivad vead on hästi defineeritud ning arvutavad
osapooled saavad turvaliselt kontrollida, kas viga esines või mitte.

Efektiivsuse tõstmiseks analüüsime ka erinevaid viise, kuidas väiksemaid andme-
tüüpe Paillier’ avateksti sisse pakkida nii, et lõpptulemusena saame iga pakitud ele-
mendi jaoks korrektse kolmiku. Elemente saab pakkida nii lineaarselt kui ka Hiina jää-
giteoreemi kasutades. Meie tulemuste kohaselt on viimane neist pakkimise mõttes efek-
tiivsem, kuid seab lisapiiranguid pakitud elementide moodulitele. Praktikas tähendab
see, et Hiina jäägiteoreemi järgi pakkimisele lisaks võime me vajada ka algoritme jaga-
tud andmete mooduli vahetamiseks.

82

Realiseerisime nii asümmeetrilise kui sümmeetrilise protokollistiku tööfaasi ja asüm-
meetrilise protokollistiku ettearvutamise faasi. Lisaks realiseerisime ühe lineaarse pak-
kimisega ning ühe ühe Hiina jäägiteoreemil põhineva pakkimisega Beaveri kolmikute
genereerimise protokolli. Katsed näitavad, et aktiivselt turvalise sümmeetrilise proto-
kollistiku tööfaas on rohkem kui kaks korda ajamahukam kui traditsiooniline kolme
osapoolega passiivselt turvaline Sharemindi protokollistik. Samas on jõudluse vahe
piisavalt väike selleks, et sümmeetriline protokollistik oleks praktikas kasutatav. Lisaks
võivad tugevamated turvagarantiid paljude kriitilise tähtsusega andmetöötlusülesanne-
te lahendamisel kaaluda üles jõudluse puudujäägid.

Ettearvutamise osas on selgelt näha, et asümmeetriline protokollistik jääb oluliselt
alla SPDZ protokollistiku täishomomorfsel krüposüsteemil põhinevale ettearvutamise-
le. Samas on meie Hiina jäägiteoreemil põhinev pakkimismeetod koos sobiva kolmikute
genereerimise meetodiga piisavalt efektiivne, et oleks võimalik selle alusel defineerida
ettearvutusfaas sümmeetrilisele protokollistikule.

83

Bibliography

[1] Aiello, W., Ishai, Y., and Reingold, O. Priced oblivious transfer: How to
sell digital goods. In Proceedings of the International Conference on the Theory
and Application of Cryptographic Techniques: Advances in Cryptology (London,
UK, UK, 2001), EUROCRYPT ’01, Springer-Verlag, pp. 119–135.

[2] Barak, B., Canetti, R., Nielsen, J. B., and Pass, R. Universally compos-
able protocols with relaxed set-up assumptions. In Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science (Washington, DC, USA,
2004), FOCS ’04, IEEE Computer Society, pp. 186–195.

[3] Barker, E., Barker, W., Burr, W., Polk, W., and Smid, M. Recommen-
dation for key management – part 1: General (revision 3). Tech. rep., National
Institute of Standards and Technology, 2012. NIST Special Publication 800-57.

[4] Beaver, D. Efficient multiparty protocols using circuit randomization. In
Proceedings of the 11th Annual International Cryptology Conference. CRYPTO
’91 (1991), J. Feigenbaum, Ed., vol. 576 of Lecture Notes in Computer Science,
Springer, pp. 420–432.

[5] Beaver, D., Micali, S., and Rogaway, P. The round complexity of secure
protocols. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing (New York, NY, USA, 1990), STOC ’90, ACM, pp. 503–513.

[6] Ben-Or, M., Goldwasser, S., and Wigderson, A. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proceedings of
the twentieth annual ACM symposium on Theory of computing (New York, NY,
USA, 1988), STOC ’88, ACM, pp. 1–10.

[7] Bendlin, R., Damgård, I., Orlandi, C., and Zakarias, S. Semi-
homomorphic encryption and multiparty computation. In Proceedings of the
30th Annual international conference on Theory and applications of cryptographic
techniques: advances in cryptology (Berlin, Heidelberg, 2011), EUROCRYPT’11,
Springer-Verlag, pp. 169–188.

[8] Blakley, G. R. Safeguarding cryptographic keys. In Proceedings of the 1979
AFIPS National Computer Conference (1979), vol. 48, pp. 313–317.

[9] Bogdanov, D. Sharemind: programmable secure computations with practical
applications. PhD thesis, University of Tartu, 2013. http://hdl.handle.net/
10062/29041.

84

http://hdl.handle.net/10062/29041
http://hdl.handle.net/10062/29041

[10] Bogdanov, D., Laud, P., and Randmets, J. Domain-polymorphic program-
ming of privacy-preserving applications.

[11] Bogdanov, D., Laur, S., and Willemson, J. Sharemind: A framework
for fast privacy-preserving computations. In Proceedings of the 13th European
Symposium on Research in Computer Security - ESORICS’08 (2008), S. Jajodia
and J. Lopez, Eds., vol. 5283 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, pp. 192–206.

[12] Bogdanov, D., Niitsoo, M., Toft, T., and Willemson, J. High-
performance secure multi-party computation for data mining applications. Int.
J. Inf. Sec. 11, 6 (2012), 403–418.

[13] Boost - C++ libraries. http://www.boost.org/. Last accessed 2013-04-02.

[14] Brakerski, Z., and Vaikuntanathan, V. Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In Proceedings of the
31st annual conference on Advances in cryptology (Berlin, Heidelberg, 2011),
CRYPTO’11, Springer-Verlag, pp. 505–524.

[15] Brier, E., and Joye, M. Weierstraß elliptic curves and side-channel attacks.
In Public Key Cryptography - PKC 2003, 6th International Workshop on Theory
and Practice in Public Key Cryptography (2002), vol. 2274 of Lecture Notes in
Computer Science, Springer, pp. 335–345.

[16] Canetti, R. Universally composable security: a new paradigm for cryptographic
protocols. In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on (oct. 2001), pp. 136 – 145.

[17] Canetti, R., Kushilevitz, E., and Lindell, Y. On the limitations of univer-
sally composable two-party computation without set-up assumptions. In Proceed-
ings of the 22nd international conference on Theory and applications of crypto-
graphic techniques (Berlin, Heidelberg, 2003), EUROCRYPT’03, Springer-Verlag,
pp. 68–86.

[18] Canetti, R., Lindell, Y., Ostrovsky, R., and Sahai, A. Universally com-
posable two-party and multi-party secure computation. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing (New York, NY,
USA, 2002), STOC ’02, ACM, pp. 494–503.

[19] Chaum, D., Crépeau, C., and Damgård, I. Multiparty unconditionally secure
protocols. In Proceedings of the twentieth annual ACM symposium on Theory of
computing (New York, NY, USA, 1988), STOC ’88, ACM, pp. 11–19.

[20] Dai, W. Crypto++ library. http://www.cryptopp.com/. Last accessed 2013-04-02.

[21] Damgård, I., Geisler, M., Krøigaard, M., and Nielsen, J. B. Asyn-
chronous multiparty computation: Theory and implementation. In Proceedings of
the 12th International Conference on Practice and Theory in Public Key Cryptog-
raphy: PKC ’09 (Berlin, Heidelberg, 2009), Irvine, Springer-Verlag, pp. 160–179.

85

http://www.boost.org/
http://www.cryptopp.com/

[22] Damgård, I., and Jurik, M. A generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In Proceedings of the 4th In-
ternational Workshop on Practice and Theory in Public Key Cryptography: Public
Key Cryptography (London, UK, UK, 2001), PKC ’01, Springer-Verlag, pp. 119–
136.

[23] Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., and
Smart, N. P. Practical covertly secure MPC for dishonest majority – or:
Breaking the SPDZ limits. Cryptology ePrint Archive, Report 2012/642, 2012.
http://eprint.iacr.org/.

[24] Damgård, I., and Nielsen, J. B. Scalable and unconditionally secure mul-
tiparty computation. In Proceedings of the 27th annual international cryptology
conference on Advances in cryptology (Berlin, Heidelberg, 2007), CRYPTO’07,
Springer-Verlag, pp. 572–590.

[25] Damgård, I., and Orlandi, C. Multiparty computation for dishonest majority:
from passive to active security at low cost. In Proceedings of the 30th annual
conference on Advances in cryptology (Berlin, Heidelberg, 2010), CRYPTO’10,
Springer-Verlag, pp. 558–576.

[26] Damgård, I., Pastro, V., Smart, N., and Zakarias, S. Multiparty com-
putation from somewhat homomorphic encryption. Cryptology ePrint Archive,
Report 2011/535, 2011. http://eprint.iacr.org/.

[27] Dierks, T., and Rescorla, E. RFC 5246 - The transport layer security (TLS)
protocol version 1.2. http://tools.ietf.org/html/rfc5246, August 2008. Last
accessed 2013-05-14.

[28] Diffie, W., and Hellman, M. E. New directions in cryptography. IEEE
Transactions on Information Theory 22, 6 (1976), 644–654.

[29] El Gamal, T. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Proceedings of CRYPTO’84 on Advances in cryptology
(New York, NY, USA, 1985), Springer-Verlag New York, Inc., pp. 10–18.

[30] Feldman, P. A practical scheme for non-interactive verifiable secret sharing. In
Proceedings of the 28th Annual Symposium on Foundations of Computer Science
(Washington, DC, USA, 1987), SFCS ’87, IEEE Computer Society, pp. 427–438.

[31] Fouque, P.-A., Poupard, G., and Stern, J. Sharing decryption in the con-
text of voting or lotteries. In Proceedings of the 4th International Conference
on Financial Cryptography (London, UK, UK, 2001), FC ’00, Springer-Verlag,
pp. 90–104.

[32] Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st annual ACM symposium on Theory of computing (New York, NY, USA,
2009), STOC ’09, ACM, pp. 169–178.

[33] Giry, D. BlueKrypt - cryptographic key length recommendation. http://www.
keylength.com. Last accessed 2013-04-02.

86

http://eprint.iacr.org/
http://eprint.iacr.org/
http://tools.ietf.org/html/rfc5246
http://www.keylength.com
http://www.keylength.com

[34] Granlund, T. GMP: The GNU multiple precision arithmetic library. http:
//gmplib.org/. Last accessed 2013-04-02.

[35] Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., and Wehren-
berg, I. TASTY: tool for automating secure two-party computations. In Pro-
ceedings of the 17th ACM conference on Computer and communications security
(New York, NY, USA, 2010), CCS ’10, ACM, pp. 451–462.

[36] Hirt, M., and Maurer, U. Complete characterization of adversaries tolerable
in secure multi-party computation (extended abstract). In Proceedings of the
sixteenth annual ACM symposium on Principles of distributed computing (New
York, NY, USA, 1997), PODC ’97, ACM, pp. 25–34.

[37] Hirt, M., and Maurer, U. Player simulation and general adversary structures
in perfect multiparty computation. JOURNAL OF CRYPTOLOGY 13 (2000),
31–60.

[38] Kushilevitz, E., and Ostrovsky, R. Replication is not needed: single
database, computationally-private information retrieval. In Proceedings of the
38th Annual Symposium on Foundations of Computer Science (Washington, DC,
USA, 1997), FOCS ’97, IEEE Computer Society, pp. 364–.

[39] Laur, S., and Lipmaa, H. A new protocol for conditional disclosure of secrets
and its applications. Applied Cryptography and Network Security (2007), 1–19.

[40] Laur, S., and Zhang, B. Lightweight zero-knowledge proofs for crypto-
computing protocols. Cryptology ePrint Archive, Report 2013/064, 2013. http:
//eprint.iacr.org/.

[41] Lipmaa, H. First cpir protocol with data-dependent computation. In Proceed-
ings of the 12th international conference on Information security and cryptology
(Berlin, Heidelberg, 2010), ICISC’09, Springer-Verlag, pp. 193–210.

[42] Malkhi, D., Nisan, N., Pinkas, B., and Sella, Y. Fairplay - a secure two-
party computation system. In Proceedings of the 13th conference on USENIX
Security Symposium - Volume 13 (Berkeley, CA, USA, 2004), SSYM’04, USENIX
Association, pp. 20–20.

[43] Recommended elliptic curves for federal government use. Tech. rep., National
Institute of Standards and Technology, 1999. http://csrc.nist.gov/groups/ST/
toolkit/documents/dss/NISTReCur.pdf.

[44] Nielsen, J. B., Nordholt, P. S., Orlandi, C., and Burra, S. S. A new
approach to practical active-secure two-party computation. In Advances in Cryp-
tology – CRYPTO 2012, R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 681–700.

[45] Paillier, P. Public-key cryptosystems based on composite degree residuosity
classes. In Proceedings of the 17th international conference on Theory and appli-
cation of cryptographic techniques (Berlin, Heidelberg, 1999), EUROCRYPT’99,
Springer-Verlag, pp. 223–238.

87

http://gmplib.org/
http://gmplib.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

[46] Pedersen, T. P. Non-interactive and information-theoretic secure verifiable se-
cret sharing. In Proceedings of the 11th Annual International Cryptology Confer-
ence on Advances in Cryptology (London, UK, UK, 1992), CRYPTO ’91, Springer-
Verlag, pp. 129–140.

[47] Pfitzmann, B., and Waidner, M. A model for asynchronous reactive systems
and its application to secure message transmission. In Proceedings of the 2001
IEEE Symposium on Security and Privacy (Washington, DC, USA, 2001), SP
’01, IEEE Computer Society, pp. 184–.

[48] Pullonen, P., Bogdanov, D., and Schneider, T. The design and imple-
mentation of a two-party protocol suite for Sharemind 3. Tech. rep., Cybernetica
AS Institute of Information Security, 2012. http://research.cyber.ee.

[49] Rabin, T., and Ben-Or, M. Verifiable secret sharing and multiparty protocols
with honest majority. In Proceedings of the twenty-first annual ACM symposium
on Theory of computing (New York, NY, USA, 1989), STOC ’89, ACM, pp. 73–85.

[50] RakNet - multiplayer game network engine. http://www.jenkinssoftware.com/.
Last accessed 2013-04-02.

[51] Schnorr, C.-P. Efficient identification and signatures for smart cards. In Ad-
vances in Cryptology - EUROCRYPT ’89, J.-J. Quisquater and J. Vandewalle,
Eds., vol. 434 of Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 1990, pp. 688–689.

[52] Shamir, A. How to share a secret. Communications of the ACM 22, 11 (Nov.
1979), 612–613.

[53] Sharemind. http://sharemind.cyber.ee. Last accessed 2013-04-19.

[54] Smart, N., and Vercauteren, F. Fully homomorphic SIMD operations. De-
signs, Codes and Cryptography (2012), 1–25.

[55] Tate, S. R., and Xu, K. On garbled circuits and constant round secure function
evaluation. Tech. rep., University of North Texas, 2003.

[56] Yao, A. C. Protocols for secure computations. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science (Washington, DC, USA, 1982),
SFCS ’82, IEEE Computer Society, pp. 160–164.

88

http://research.cyber.ee
http://www.jenkinssoftware.com/
http://sharemind.cyber.ee

Non-exclusive licence to reproduce thesis and make thesis public

I, Pille Pullonen, (date of birth: 06.01.1989),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until expiry of the term of validity of
the copyright,

Actively secure two-party computation: Efficient Beaver triple generation

supervised by Sven Laur, Tuomas Aura, and Dan Bogdanov.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 20.05.2013

89

	1 Introduction
	1.1 Motivation
	1.2 Contribution of the author
	1.3 Structure of the thesis

	2 Preliminaries
	2.1 Cryptographic primitives
	2.1.1 Additive secret sharing
	2.1.2 Chinese remainder theorem
	2.1.3 Universal composability
	2.1.4 Paillier cryptosystem
	2.1.5 Elliptic curves
	2.1.6 Lifted Elgamal cryptosystem
	2.1.7 Zero-knowledge proofs
	2.1.8 Dual-mode commitment schemes
	2.1.9 Message authentication codes

	2.2 Secure multi-party computation
	2.2.1 Overview of SMC techniques
	2.2.2 General SMC threat model
	2.2.3 Achieving actively secure two-party computation

	2.3 The Sharemind SMC framework
	2.3.1 Application model
	2.3.2 Computation primitives
	2.3.3 Programming applications

	3 Principles of the SPDZ framework
	3.1 Precomputation model
	3.2 Oblivious MAC
	3.3 Beaver triples
	3.4 Basic protocols
	3.5 Initialising actively secure two-party computation
	3.5.1 Asymmetric setup
	3.5.2 Symmetric setup
	3.5.3 Shared key setup

	4 Asymmetric two-party computation
	4.1 Protection domain setup
	4.2 Publishing shared values
	4.3 Random share generation
	4.4 Beaver triples generation
	4.5 Receiving inputs from the input party
	4.6 Efficiency of the protocols
	4.6.1 Computational cost
	4.6.2 Communication cost

	5 Protocols for Beaver triple generation
	5.1 Setup for triple generation protocols
	5.2 Packing several shares into one generation
	5.2.1 Packing as base-B numbers
	5.2.2 Triple generation with partial base-B packing
	5.2.3 Packing using the Chinese remainder theorem

	5.3 Share conversion
	5.3.1 Converting binary shares to any modulus
	5.3.2 Problems with converting the third triple element
	5.3.3 Triple generation with share conversion

	5.4 Comparison of proposed triple generation ideas

	6 Symmetric two-party computation
	6.1 Protection domain setup
	6.2 Publishing shared values
	6.3 Receiving inputs from the input party
	6.4 Publishing a secret to the result party
	6.5 Precomputation
	6.5.1 Random share generation
	6.5.2 Beaver triples generation

	6.6 Efficiency of the protocols
	6.6.1 Computational cost
	6.6.2 Communication cost

	7 Implementation
	7.1 Implementation platform
	7.2 Secure computation capabilities
	7.3 Performance measurements
	7.3.1 Online protocols
	7.3.2 Precomputation protocols

	8 Conclusions
	Eestikeelne resümee
	Bibliography

