
University of Tartu
Faculty of Mathematics and Computer Sciences

Institute of Computer Science
Specialty of Computer Science

Jaak Ristioja

An analysis framework for an imperative
privacy-preserving programming language

Master’s thesis (30 ECTS)

Supervisor: Dan Bogdanov, MSc

Author: . 15. June 2010
Supervisor: . 15. June 2010

Allowed for defense
Professor . “......” June 2010

Tartu 2010

Contents

1 Introduction 4
1.1 Outline of this thesis . 5
1.2 Author’s contribution . 6

2 Grammar 7
2.1 Character set and whitespace . 7
2.2 Program . 8
2.3 Variable definitions . 8
2.4 Types . 9
2.5 Procedures . 9
2.6 Statements . 9
2.7 Expressions . 10

3 Static checking 12
3.1 Type system . 12

3.1.1 Regular types . 12
3.1.2 Statement types . 14
3.1.3 Program types . 14

3.2 Typing rules . 15
3.2.1 Identifiers and procedure overloading . 15
3.2.2 Type environment . 15
3.2.3 Checking expressions . 16
3.2.4 Checking statements . 18
3.2.5 Checking programs . 21

4 Natural semantics 23
4.1 Locations, stores and environments . 23
4.2 Evaluation of expressions . 24

4.2.1 Declassification and classification . 25
4.2.2 Variables and constants . 26
4.2.3 Simple expressions . 26
4.2.4 Logical expressions . 27
4.2.5 Ternary operation . 28
4.2.6 Assignment expressions . 29
4.2.7 Procedure calls . 29

4.3 Evaluation of variable definitions . 31
4.4 Evaluation of statements . 31

4.4.1 Compound statements . 32
4.4.2 Statement blocks . 33
4.4.3 Local variable definitions . 33
4.4.4 Return statements . 33
4.4.5 Break and continue statements . 34
4.4.6 Expression statements . 34
4.4.7 if-statements . 34
4.4.8 while-loops . 36
4.4.9 do-while-loops . 36
4.4.10 for-loops . 37

4.5 Evaluation of procedure definitions . 38
4.6 Evaluation of the program . 39

5 Intermediate representation 40
5.1 Symbol table . 40
5.2 Instruction set . 41

2

6 Analysis for SecreC 43
6.1 Basic blocks and the control flow graph . 43
6.2 Data-flow analysis component in the SecreC Analyzer 44

7 Experimental results 46
7.1 Reaching definitions analysis . 46
7.2 Reaching jumps analysis . 46
7.3 Detecting information leakage . 47

8 Conclusion 49

9 Analüüsiraamistik privaatsust säilitavale programmeerimiskeelele SecreC 50

Appendices: 51

A Typing for Binary Operations 51

B Algorithm for data-flow analyses in SecreC Analyzer 52

C Source code for SecreC Analyzer library 54

3

1 Introduction

Program analysis has a major role in modern-day software development. It is used in many
programming environments, most importantly in optimizing compilers, debugging tools and integrated
development environments to provide syntax-directed editing of source code, context sensitive auto-
completion etc. The primary advantage provided by static analyses is the information given about
the dynamic behavior of the program without actually running it.

Sharemind [?] is a secure multi-party general-purpose computation system, which is able to process
data without disclosing it. It is foremost meant to be used for data mining applications [?, ?].
Sharemind consists of a hybrid virtual machine which is run on n participating computers in a
synchronous fashion [?]1. The participants are called miners. The Sharemind hybrid virtual machine
currently interprets an assembly language [?] which makes a clear distinction between public and
secret (or private) data registers and values, which can be viewed as different domains for data. Each
assembly program executed on the hybrid machine is run on all miners in parallel. The Sharemind
assembly language has different instructions for operating on public and secret data. It also provides
means for input of public and secret data, output of public data, and transforming public data to
secret data and vice-versa.

Public data is entered by sending the input data to each miner in the hybrid machine. All the miners
have identical copies of all public data. On the other hand, all secret data in Sharemind hybrid
virtual machine is distributed among the n miners by using a secret sharing scheme. The secret
sharing scheme uses a randomized algorithm to split the sensitive data values into n shares. All n
shares are distributed among the miners, so that each miner gets one share. The secret sharing scheme
guarantees that the secret data can only be deduced from no less than n shares. All secret data is
input to the hybrid machine as shares. To mitigate a side-channel attack, only public data is allowed
to change the control flow of the hybrid machine during execution.

To perform computations on the sensitive data, secure computation protocols are executed between
the parties. Different share computation protocols are used for each atomic operation in Sharemind.
These include protocols for addition, multiplication, comparisons of 32-bit unsigned integers. Several
protocols for other simple operations are currently being developed. All intermediate and final results
of sensitive computations done on the shares are also distributed as n shares among the parties. The
share computation protocols are also formulated in ways to ensure that at no point in time can any
n − 1 parties deduce correct information about the sensitive input or result data. To read the final
result of any computation, a trusted party collects all the n shares of the result and calculates its real
value.

Since writing programs in an assembly language is an error-prone and tedious task, a higher-level
imperative programming language for the Sharemind hybrid machine was developed [?]. Its syntax
is inspired by the syntax of the C programming language, hence the programming language was
named SecreC. The most important feature to distinguish SecreC from similar simple programming
languages is its separation of public and private data, which correspond to public and secret data in
the Sharemind hybrid machine. The handling of public and secret data is somewhat similar to [?, ?],
but an additional declassification operator (declassify) is provided to publish private data values
and conditional branching on private values is not allowed.

Although the Sharemind hybrid virtual machine provides adequate security guarantees for individual
1Currently the implementation of the Sharemind hybrid virtual machine is limited to three participants.

4

operations, it is still left to the programmer to decide exactly what secret data to publish. Before
making any secret data public, it is advisable to process the data to an extent which makes the task
of deducing any of the original secret input values from it infeasible. Publishing secret inputs directly
is clearly something the programmer should not do.

SecreC is aimed to give guarantees for the security of private data processed by programs written in
the SecreC programming language. We have decided to create a program analysis framework to aid the
programmer in minimizing the amount of information leaked by programs. Currently, our framework
is a work-in-progress to provide tools to help the programmer measure data leaks in SecreC programs.
To write programs that preserve the privacy of the their secret inputs, the programmer needs to
know exactly in which conditions data is published, and what kind of processing the secret data has
gone through before being published. A strictly formal specification of the grammar and semantics of
SecreC is needed before any correct analysis with safety guarantees can be formulated on top of the
language.

Hence, mostly for future purposes we have formalized a major subset of the SecreC language with
the means of a context free grammar, formulation of its type system together with static checking
rules, and operational semantics. Finally, we have created an intermediate representation which, if
used together with a symbol table, is capable of expressing all SecreC programs described by the
rules in this paper. This intermediate representation is used for analysis purposes by our analyzer.
SecreC Analyzer provides a simple framework for running forward and backward data-flow analyses.
Currently, a few simple data-flow analysis algorithms are implemented.

One of the principles formulated for the design of SecreC Analyzer dictates that the framework must
include a library which can be used in integrated development environments (IDEs), such as SecreCIDE
[?]. In the future, our analysis framework is also meant to serve as a front-end for optimizing SecreC
compilers.

1.1 Outline of this thesis

This master’s thesis presents a formalization of the core subset of the SecreC programming language –
its grammar, static checking rules and semantics – and describes the analysis framework and analyses
currently being developed.

• Chapter 2 presents the formal grammar for a subset of SecreC, which is to be used for the basis
of our analyses and as a starting point for any future improvements to the language. The rules
given also serve as an initial reference point to anyone interested in the language, since they
cover its basics.

• Chapter 3 is dedicated to formulate static checking rules to which all SecreC programs must
comply. We have developed a type system which reflects the allowed data flow between private
and public data domains. These rules also seek to enforce good coding practices, e.g. by
disallowing some unreachable code.

• Chapter 4 gives formal semantics for the SecreC programming language, which is of most use
in SecreC compilers and interpreters. These semantics are also used by the SecreC Analyzer
presented by in following chapters.

• Chapter 5 presents an intermediate representation used for reasoning about SecreC programs.

5

SecreC Analyzer uses the intermediate representation to perform data-flow analyses. In principle,
this intermediate representation can be translated into assembly code format.

• Chapter 6 gives an overview of data-flow analysis in the SecreC Analyzer. We describe the
format of the control flow graph used in our analyzer, and the implemented analysis.

• Chapter 7 describes three different data-flow analyses we have implemented using the framework
provided by the SecreC Analyzer. These serve to demonstrate some of the capabilities of the
analyzer and also form a minimum basis for future analyses.

1.2 Author’s contribution

The main contribution to this thesis is the formal specification for the core subset of the SecreC
programming language. It is provided as a context-free grammar, static checking rules and semantic
rules given in Chapters 2, 3 and 4 respectively. Before writing this specification, SecreC was
only defined by its current compiler to Sharemind assembly code [?]. The author developed this
formalization based on the grammar file used in the SecreC compiler, on the explanations of language
features provided by Roman Jagomägis and on a future vision for the language by Dan Bogdanov.
Parallel to writing this specification, the author developed the SecreC Analyzer for analysis of SecreC
programs. The intermediate representation for SecreC programs used by the analyzer is given in
Chapter 5 and the principles it uses to perform data-flow analysis are given in Chapter 6. The author
also implemented three simple data-flow analyses for the analyzer as described in Chapter 7.

6

2 Grammar

SecreC is a domain-specific programming language strongly influenced by the syntax of C. Since it is
aimed at providing a higher-level language for writing computer programs for the Sharemind hybrid
virtual machine, SecreC needs to be fully formalized to provide strong security guarantees in the
future.

The grammar given in this chapter does not exactly describe the language accepted by the current
SecreC compiler described in [?]. Major omissions in this paper include vectors, matrices and type
casting which are still being worked on. Compared to [?], we allow global variable definitions and
procedure definitions to occur in any order. Also, specifying the SecreC standard library is not a part
of this thesis.

We specify the syntax for the subset of SecreC using a context free grammar. The grammar rules
are described using a variant of the Backus-Naur Form (BNF) extended with some regular expression
constructs, such as regular braces for grouping subexpressions, the repetition operator ∗ as superscript,
and the ? suffix for denoting optionality of the preceding subexpression.

In the specification of the grammar, we use angle brackets to denote 〈nonterminals〉, apostrophes to
denote terminals, i.e. ’exact strings’ as returned by the scanner, and all capitals for certain sets
of strings such as the set of IDENTIFIER names.

2.1 Character set and whitespace

Tokens returned by the SecreC scanner are either keywords, operators, string literals, integer literals,
unsigned integer literals or identifiers. When tokenizing the input, whitespace is allowed to appear
between tokens. There are also two kinds of comments which are treated as whitespace between
tokens. Any such whitespace is ignored, except inside string literals. Inside string literals, whitespace
and characters denoting comment constructs are returned as part of the string literal token.

In SecreC, there are 18 keywords: bool, break, continue, declassify, do, else, false, for, if,
int, private, public, return, string, true, unsigned, void and while; and 28 other tokens with
fixed contents:

+= -= *= /= %= && ||

= <= >= < > == !=

{ } () ? : ,

+ * / % - ! ;

String literals (strings in the set STRING LITERAL) in SecreC are tokens which start with a double
quote character (”) and continue up to (and including) another double quote character not preceded
by a backslash character (\). The string literal therefore always ends and starts with double quote
characters and may contain escape sequences, i.e. \” to denote a single double quote character in
the string and \\ denoting a single backslash in the string. The string corresponding to the string
literal is stripped of the two enclosing double quotes, and has the escape sequences replaced by their
single-character counterparts. Implementation may also define additional escape sequences.

Integer literals (strings in the set INT LITERAL) in SecreC are tokens which are used to represent signed
integer values in the source code of SecreC programs. These are required to match the following regular

7

expression:
0 | (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9) (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗

Unsigned integer literals (strings in the set UINT LITERAL) are used to represent unsigned integer
values and are required to match the following regular expression:

0
(
0 | (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9) (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗

)
Identifiers (string in the set IDENTIFIER) are tokens which represent variable and procedure names
in SecreC. These strings consist only of lowercase and uppercase Latin characters, underscores and
decimal digits, the first character of any identifier must not be a decimal digit. Keywords are not
considered to be identifiers.

There are two types of comments in SecreC, both of which should not be included in the output list
of tokens. The single line comments start with two consecutive forward slashes (//) and continue
until a new line character (e.g. bytes with hexadecimal values 0x0A and 0x0D in ASCII). Multiline
comments start with a consecutive forward slash and asterisk (/*) and continue up to (and including)
a consecutive asterisk and forward slash (*/). If the character sequences that start comments appear
inside string literals or other comments, they are not considered to start comments. This also means
that comments can not be nested inside other comments.

2.2 Program

The top-level of any SecreC program consists of one or more global variable or procedure definitions:

〈program〉 ::= 〈variable definition〉 〈program〉
| 〈procedure definition〉 〈program〉
| 〈variable definition〉
| 〈procedure definition〉

Later static checking rules require that there be at least a procedure called main present in the program.
Note that while variable definitions can also appear in local scopes (see Section 2.6), procedures can
only be defined globally, under the 〈program〉 nonterminal rule. According to the semantics of SecreC,
all definitions after the definition of procedure void main() are unreachable. The static checking rules
and semantics for the top-level program constructs are given in detail in Subsection 3.2.5 and Section
4.6, respectively.

2.3 Variable definitions

Variables are defined by specifying the type of the variable, its name and an optional initializer
expression:

〈variable definition〉 ::= 〈type specifier〉 IDENTIFIER ’=’ 〈expression〉 ’;’
〈type specifier〉 IDENTIFIER ’;’

8

2.4 Types

Type annotations in SecreC consist of the security type annotation followed by the data type
annotation:

〈type specifier〉 ::= 〈sectype specifier〉 〈datatype specifier〉
〈sectype specifier〉 ::= ’public’ | ’private’
〈datatype specifier〉 ::= ’string’ | ’int’ | ’unsigned’ ’int’ | ’bool’

2.5 Procedures

Procedure definitions consist of a return type annotation, the name of the procedure, its list of type-
annotated parameters and the function body:

〈procedure definition〉 ::= (’void’ | 〈type specifier〉) IDENTIFIER
’(’ 〈procedure parameter list〉? ’)’
〈compound statement〉

〈procedure parameter list〉 ::= 〈procedure parameter〉 (’,’ 〈procedure parameter〉)∗

〈procedure parameter〉 ::= 〈type specifier〉 IDENTIFIER

Note, that if the procedure does not return anything, its return type should be annotated as ’void’.
The body of the procedure is always enclosed in curly brackets (i.e. ’{’ and ’}’) because we use
〈compound statement〉 as described in Section 2.6.

2.6 Statements

The set of statements in SecreC is also similar to those in C, except that there are no switch
statements, goto statements and labels. Statements only appear inside procedure bodies.

〈compound statement〉 ::= ’{’ 〈statement list〉? ’}’
〈statement list〉 ::= 〈variable definition〉 〈statement list〉

| 〈statement〉 〈statement list〉
| 〈statement〉

〈statement〉 ::= 〈compound statement〉 | 〈if statement〉 | 〈for statement〉
| 〈while statement〉 | 〈dowhile statement〉 | ’return’ 〈expression〉 ’;’
| ’return’ ’;’ | ’continue’ ’;’ | ’break’ ’;’ | ’;’ | 〈expression〉 ’;’

〈if statement〉 ::= ’if’ ’(’ 〈expression〉 ’)’ 〈statement〉 (’else’ 〈statement〉)?
〈for statement〉 ::= ’for’ ’(’ 〈expression〉? ’;’ 〈expression〉? ’;’ 〈expression〉? ’)’

〈statement〉
〈while statement〉 ::= ’while’ ’(’ 〈expression〉 ’)’ 〈statement〉

〈dowhile statement〉 ::= ’do’ 〈statement〉 ’while’ ’(’ 〈expression〉 ’)’

In contrast to these grammar rules, static checking rules in Chapter 3 allow ’break’ and ’continue’
statements only to appear inside loop bodies. Similarly, the two different kinds of ’return’ statements

9

are checked for validity with respect to the return type of the procedure the statements are contained
in.

2.7 Expressions

The following grammar rules are used for expressions:

〈expression〉 ::= 〈assignment expression〉
〈assignment expression〉 ::= IDENTIFIER 〈assignment operator〉 〈assignment expression〉

| 〈conditional expression〉
〈assignment operator〉 ::= ’=’ | ’*=’ | ’/=’ | ’%=’ | ’+=’ | ’-=’

〈conditional expression〉 ::= 〈logical or expression〉 (’?’ 〈expression〉 ’:’ 〈expression〉)?
〈logical or expression〉 ::= (〈logical or expression〉 ’||’)? 〈logical and expression〉
〈logical and expression〉 ::= (〈logical and expression〉 ’&&’)? 〈equality expression〉
〈equality expression〉 ::= (〈equality expression〉 (’==’ | ’!=’))? 〈relational expression〉

〈relational expression〉 ::= (〈relational expression〉 (’<’ | ’>’ | ’<=’ | ’>=’))?
〈additive expression〉

〈additive expression〉 ::= (〈additive expression〉 (’+’ | ’-’))? 〈multiplicative expression〉
〈multiplicative expression〉 ::= (〈multiplicative expression〉 (’*’ | ’/’ | ’%’))?

〈unary expression〉
〈unary expression〉 ::= (’-’ | ’!’) 〈postfix expression〉

| 〈postfix expression〉
〈postfix expression〉 ::= ’declassify’ ’(’ 〈expression〉 ’)’

| IDENTIFIER ’(’
(
〈expression〉 (’,’ 〈expression〉)∗

)
? ’)’

| 〈primary expression〉
〈primary expression〉 ::= ’(’ 〈expression〉 ’)’ | IDENTIFIER | 〈constant〉

〈constant〉 ::= INT LITERAL | UINT LITERAL | STRING LITERAL | ’true’ | ’false’

The keywords true and false in the nonterminal 〈constant〉 are used to denote boolean constants.

We have summarized the associativity and precedence of relevant SecreC operators in the table below.
The operators in the table are given in order of precedence from the highest to the lowest.

Level Operator Description Associativity

1. () Procedure call Left-associative

2.
- Unary arithmetic negation

Right-associative
! Unary logical negation

3.
* Multiplication

Left-associative/ Division
% Modulus

4.
+ Addition

Left-associative
- Subtraction

5.

< Relational “less than”

Left-associative
<= Relational “less than or equal to”
> Relational “greater than”
>= Relational “greater than or equal to”

10

Level Operator Description Associativity

6.
== Relational “is equal to”

Left-associative
!= Relational “is not equal to”

7. && Logical AND Left-associative

8. || Logical OR Left-associative

9. ?: Ternary conditional Right-associative

10.

= Assignment

Right-associative

+= Arithmetic addition assignment
-= Arithmetic subtraction assignment
*= Arithmetic multiplication assignment
/= Arithmetic division assignment
%= Arithmetic modulus assignment

11

3 Static checking

SecreC is a statically typed language, meaning that type checking can and should be performed
at compile-time only to ensure run-time type-safety. Type-annotated definitions of variables and
procedures as described in Chapter 2 give a sound foundation for this. In this chapter we present a
system for static checking (and type-checking) of SecreC programs which also defines the set of all
grammatically correct SecreC programs that are also valid semantically.

For static checking of SecreC programs, we stratify the type system and typing rules into three separate
layers, each of which corresponds to a certain layer of rules in the SecreC grammar (or an abstract
syntax tree). The lower layer of the type system deals with notions like values, variables, expressions.
The middle layer corresponds to typing statements. The higher layer types and rules correspond to
whole SecreC programs. Although all three layers are used jointly in static checking, they are distinct
in their construction.

In this chapter we first formulate a type system for SecreC, used to statically check SecreC programs,
statements and expressions. After this we present formal inference rules for static checking.

3.1 Type system

The type system used for static checking of SecreC programs provides means to denote certain
properties of interest for SecreC programs and parts thereof. We consider the aforementioned three
strata separately in the following sections.

3.1.1 Regular types

The lower layer of the type system for SecreC defines properties for values and variables in the language
itself. Namely, each constant and expression, as well as each defined variable and procedure in any
valid SecreC program has a type from the lower layer of this type system used for static checking.

Let’s have a meta-variable ρ to denote these types. Each such type either consists of an abstract
security type ρτ and an abstract data type ρδ, or is void:

ρ ::=
(
ρτ , ρδ

)
| void

The type void (also know as the unit type) denotes data holding no information, i.e. allows only one
possible value. It is not possible in SecreC to define variables of type void, or to work on values of
type void. However, the return type of procedures may be defined to be void. In the latter case the
procedure does not return a value, and such a procedure call can not be used as a subexpression, but
only as a separate expression statement.

3.1.1.1 Data types

Data types are further stratified into two layers. The lower layer data types are called fundamental
data types and the higher level data types are referred to as abstract data types.

12

The SecreC programming language has four fundamental data types, denoted by the meta-variable
δ: booleans (bool), 32-bit signed integers (int), 32-bit unsigned integers (unsigned int) and strings
(string). Formally:

δ ::= bool | int | unsigned int | string

An abstract data type, denoted by the meta-variable ρδ, is either

• a fundamental data type δ denoting the types of values,

• a variable type δ var denoting the type of variables holding values of fundamental data type δ,
i.e. the abstract data type of the l-value for such variables2,

• a procedure type (δ1 × . . .× δn) → δ denoting procedures taking n parameters (values) of
fundamental data types δ1, . . . , δn and returning a value of fundamental data type δ.

• a procedure type (δ1 × . . .× δn) → () denoting procedures taking n parameters (values) of
fundamental data types δ1, . . . , δn and returning no value.

More formally:
ρδ ::= δ | δ var | (δ1 × . . .× δn)→ δ | (δ1 × . . .× δn)→ ()

3.1.1.2 Security types

Data in SecreC is classified into the public and private domains. Hence, we use public and private
security classes to denote data accordingly. These security classes can also be modeled after [?] to
form a lattice. We denote the security classes using the meta-variable τ :

τ ::= public | private

An abstract security type, denoted by the meta-variable ρτ , is (similarly to abstract data types) one
of the following:

• a security class τ denoting the security class of data held as values and data held by variables

• a procedure type (τ1 × . . .× τn) → τ denoting procedures taking n parameters (values) of
security classes τ1, . . . , τn and returning a value of security class τ .

• a procedure type (τ1 × . . .× τn) → () denoting procedures taking n parameters (values) of
security classes τ1, . . . , τn and returning no value.

More formally:
ρτ ::= τ | (τ1 × . . .× τn)→ τ | (τ1 × . . .× τn)→ ()

In addition, we define the binary ⊕ operator which is similar to the ⊕ operator in [?]. It is used
in the static checking rules in Subsection 3.2.3 to infer security types for results of certain kinds of
expressions. Although both return identical results for security types, the latter is a total binary
operation on the set of security classes τ while on the other hand our ⊕ operator is a partial binary

2The primary reason for specifying a separate variable data type is for future purposes when support for references
will be added to SecreC.

13

operation on the set of abstract security types. Currently, we define the exact domain of ⊕ only to
include security classes:

⊕ : ρτ × ρτ → ρτ

ρτ1 ⊕ ρτ2 =

public if ρτ1 = public and ρτ2 = public
private if ρτ1 = private and ρτ2 = public

or ρτ1 = public and ρτ2 = private
or ρτ1 = private and ρτ2 = private

The relation → between security types defines the allowed direction of data flow. For our security
types, only the following hold:

private→ private

public→ public

public→ private

meaning that data can flow in its own domain, and public data can flow into the private domain.

3.1.2 Statement types

The middle layer of the type system for static checking deals with statements. All statements in SecreC
programs are contained in procedure bodies. Some statements, like if-statements, loop constructs
and compound statements (statement blocks) may also contain other statements. For this reason, we
first define four properties for statements:

• fallthru - the execution of the statement may end without reaching a return, break or continue
statement.

• return - the execution of the statement may end because of reaching a return statement.

• break - the execution of the statement may end because of reaching a break statement.

• continue - the execution of the statement may end because of reaching a continue statement.

The type of a specific statement is determined by the set of properties that hold for that statement.
We denote the set of statement types with the meta-variable ΓS :

ΓS ∈ P({fallthru, return, break, continue})

3.1.3 Program types

The higher layer of the type system for static checking deals with whole programs. In this higher layer
of the type system we denote the types of programs with the meta-variable ΓP . Currently, we are
only interested in whether a program is well-typed or not. Therefore, we only allow valid programs
to by typeable:

ΓP ∈ {prog}

where prog is the type of all well-typed programs.

14

3.2 Typing rules

Before presenting individual typing rules, we start by defining mangled identifiers and a type
environment, and describe how procedure overloading is handled. The typing rules used for static
checking are written as inference rules with a syntax similar to [?] which has served as a basis for
inspiration.

3.2.1 Identifiers and procedure overloading

In addition to identifiers idS returned by the scanner (i.e. IDENTIFIER tokens in Chapter 2), we define
the entire set of identifiers id also to include mangled identifiers from a set idM and a special identifier
thisproc. A mangled identifier for a procedure contains the name of the procedure and information
about the data types of its parameters. Mangled identifiers are used to emulate procedure overloading.
The special identifier thisproc is used to denote the type of the procedure being processed3. The
concrete set of elements in idM as well as the special identifier thisproc are implementation-specific,
but they are both required to be distinct from all possible identifiers returned by the scanner, and
distinct from each other. Hence, the whole set of identifiers id can be formalized as

id = idS] idM]{thisproc}

For procedure overloading, we define a bijective function M for procedure name mangling, which
takes an identifier as returned by the scanner and the list of data types of the procedure parameters,
and returns a mangled identifier:

M : idS × (δ1 × . . .× δn)→ idM

The procedure overloading mechanism in this paper allows several procedures with the same name to
be present in SecreC programs under some conditions. Namely, for each two procedures with the same
name, they must either take a different number of parameters, or if they both take n parameters then
the data type of the ith parameter must differ, where n > 0 and i ∈ {1 . . . n}. This is a reasonable
way to solve the ambiguity introduced by [?] which also allows overloading on security types in the
context where the security types of the arguments can implicitly change.

3.2.2 Type environment

According to the SecreC grammar in Chapter 2, there are only three distinct places where
lookup or checking for the type for identifiers is necessary: when assigning to variables in
〈assignment expression〉, when reading the variables in 〈primary expression〉 and when calling
procedures 〈postfix expression〉. Every identifier typed by the programmer, should only either
refer to a variable, or to one or more procedures.

According to the scoping rules formally defined later, for all identifiers i, a definition of procedure
i irreversibly hides any previous definitions of global variables i. A definition of global variable

3Note that additional special identifiers may also be added to the set of identifiers for the purpose of providing
context-sensitive information for inference rules defined in this chapter and also in the semantics.

15

i shadows all previous definitions of i, including the definitions of procedures i. However, when
defining another procedure i, any previous procedure definitions are again un-shadowed while the
global variable definition of i is hidden. Similar rules are set for procedure parameters and local
variable definitions, which also hide all previous definitions for their scope.

Let γ be a type environment, a partial function from the set of all identifiers to the set of types:

γ : id ↪→ ρ] {proc}

where proc denotes that the identifier given to γ points to some procedure. The rationale behind
this is that when in some scope the last definition of the identifier i ∈ idS is a procedure definition,
i.e. when γ(i) = proc for the type environment γ of that scope, then γ also returns the full type of
the procedure (including the security types of the parameters and the return type) when given some
mangled identifier of the procedure.

Updating a type environment γ with a definition of x having type t, where t ∈ ρ] {proc}, is denoted
by γ[x 7→ t] and defined by the following equation:

γ[x 7→ t] (x′) =

{
t if x′ = x

γ(x′) if x′ 6= x

Updating the type environment is what hides or shadows (or un-shadows) any previous definitions of
the given identifier. When defining a new procedure denoted by the identifier i, one needs to update
the type environment twice: first to point the identifier i to proc, and secondly to point the mangled
i to the actual type of the procedure.

3.2.3 Checking expressions

In this section, we denote expressions with e, variables with x, procedure names with f and values
with the meta-variable v.

The ηEConst rule defines the type for explicit values typed by the programmer such as decimal or
string literals and keywords true and false which correspond to boolean constants:

ηEConst
validLiteral(v)

γ ` v : (public,datatype(v))

where function datatype(v) is the data type of value or literal v, and the predicate validLiteral checks
whether the given literal is a valid string, integer, unsigned integer or boolean literal. For string literals
the predicate validLiteral checks that there are no invalid or incomplete escape sequences in the string.
For integer and unsigned integer literals it checks whether the corresponding decimal value fits into
the corresponding 32-bit signed or unsigned integer data type. The function datatype is defined as
follows:

datatype(v) =

string if v is a string literal
bool if v is true or false

unsigned int if v is a integer literal
int if v is an unsigned integer literal

For variables appearing as r-values, the ηERValue can be used, which infers the type of the value held

16

by some variable.

ηERValue
γ(x) = (τ, δ var)
γ ` x : (τ, δ)

For ternary expressions, the rule ηETernary requires the conditional expression to be of type
(public, bool) to do the branching. The data types of both branches of the ternary expression
are required to be fundamental data types and equal, and the security type of the ternary expression
depends on the security types of the branches.

ηETernary
γ ` e : (public, bool) γ ` e1 : (τ1, δ) γ ` e2 : (τ2, δ) τ = τ1 ⊕ τ2

γ ` e ? e1 : e2 : (τ, δ)

For a ternary expression a simple optimization is to calculate one branch, depending on the value of the
conditional. Since directing the control flow on private conditions causes side-channel information
leaks in Sharemind, we require the ternary conditional always to be public to avoid ambiguity which
would arise from different semantic rules depending on the security type of the conditional. Namely,
it is in some cases possible to have safe ternary expressions with private conditional expressions, but
its semantics would require both branches to be calculated regardless of the value of the conditional.

According to ηEBinary, the data type of binary expressions depends on the types of the operands.
As in ηETernary, the subexpressions are required to have fundamental data types, and the security
type of the binary expression is the safest security type of the subexpressions. The partial function
BOT~ returns the data type for all binary operations ~ ∈ {||, &&, ==, !=, <, <=, >=, >, +, -, *, /, %} and
is tabulated in Appendix A. Note, that for some operators both the allowed security types and data
types differ from [?].

ηEBinary
γ ` e1 : (τ1, δ1) γ ` e2 : (τ2, δ2) τ = τ1 ⊕ τ2 δ = BOT~(δ1, δ2)

γ ` e1 ~ e2 : (τ, δ)

In rule ηEAssignOp for regular assignment expressions, we just require the variable we assign to (the
l-value) to hold values of the same type as the expression (r-value) we assign to it.

ηEAssignOp
γ(x) = (τ, δ var) γ ` e : (τ ′, δ) τ ′ → τ

γ ` x = e : (τ, δ)

For arithmetic assignment expressions that perform calculations based on the current value of the
variable, ηEAssignOp2 requires that the corresponding binary arithmetic operation between the l-
value and the r-value is typeable, and that the variable being assigned to can hold the result of this
operation.

ηEAssignOp2
γ(x) = (τ, δ var) γ ` x~ e : (τ ′, δ) τ ′ → τ

γ ` x ~= e : (τ, δ)

where ~ ∈ {+, -, *, /, %}.

Typing rules for unary operators only require certain data types for its operands, namely the ηENot
rule for logical negation and the ηENeg for numerical negation require their operands to be of data
types bool or int respectively.

17

ηENot

γ ` e :
(
τ, bool

)
γ ` !e :

(
τ, bool

) ηENeg

γ ` e :
(
τ, int

)
γ ` -e :

(
τ, int

)

The ηEDeclassify rule is used to convert private data into public data. Without this rule it
is impossible to transfer any information from private values to public variables or output. By
requiring the argument to be of private security type, expressions like declassify(declassify(e))
are not possible.

ηEDeclassify
γ ` e : (private, δ)

γ ` declassify(e) : (public, δ)

For procedure calls, the ηEProcCall rule first checks whether the procedure identifier f is of type proc
according to the type environment, that all the given arguments type-check properly, and have value
types. After this, it must be checked whether the mangled identifier f is in the type environment
and whether the security types for the arguments can satisfy the security types for the procedure
parameters. These checks are part of the procedure overloading mechanism. The result type for the
procedure call can also be calculated from the procedure type returned from the type environment by
its mangled identifier.

ηEProcCall

γ ` f : proc
γ ` e1 : (τ1, δ1)

...
γ ` en : (τn, δn)

γ ` M(f, δ1, . . . , δn) :
((
τ1 × . . .× τn

)
→ τ, (δ1 × . . .× δn)→ δ

)
τ1 → τ1

...
τn → τn

γ ` f(e1, . . . ,en) : ρ

where

ρ =

{
(ρτ , ρδ) if ρτ 6= () and ρδ 6= ()
void if ρτ = () and ρδ = ()

In the following sections, let the predicate goodexpr(γ, e) check whether the expression e properly
type-checks in the type environment γ, i.e. that there exists some ρ so that γ ` e : ρ.

3.2.4 Checking statements

Statements are checked in a sequential manner – one after the other – using the meta-variable S

to denote any following statements. For some rules, however, no following statements are allowed.
The type for any set of sequential statements denotes the set of possible results for executing these
statements. For example, for an if statement where one branch always ends with a return and the
other branch always ends with a break, then the type of that if statement would be {break, return},
and static checking does not allow any statements to directly follow that if statement.

The static checking rules ηSBreak for break statements, ηSContinue for continue statements,
ηSReturn and ηSReturnVoid for return statements don’t allow any statements to follow. This
forces the programmer not to write any unreachable code directly after these statements. For return

18

statements, an additional check for the return type is done. The type of the empty statement according
to ηSEmpty is ∅.

ηSBreak

γ ` break; : {break}
ηSContinue

γ ` continue; : {continue}

ηSReturn

γ ` e : (τ ′, δ)
γ(thisproc) = ((τ1, . . . , τn)→ τ, (δ1, . . . , δn)→ δ)

τ ′ → τ
γ ` return e; : {return}

ηSReturnVoid
γ(thisproc) = ((τ1, . . . , τn)→ (), (δ1, . . . , δn)→ ())

γ ` return; : {return}

ηSEmpty

γ ` ε; : ∅

For compound statements, three different cases have to be considered. The first two cases deal
with local variable definitions followed by statements in the type environment updated with the new
variable type. Each local variable definition can be viewed as a definition of a new scope for variables.
Therefore, the rules ηSCompoundVarDef and ηSCompoundVarDefInit only allow variable definitions
to be followed by at least one non-empty statement. The opposite case – to define the variable and
then just discard it together with the scope – would make no sense, since one could instead just use
an expression statement. In the ηSCompoundVarDefInit rule, the type of the initializer expression is
also checked to correspond to the type of the variable being defined.

ηSCompoundVarDef
γ[x 7→ (τ, δ var)] ` S : ΓS ΓS 6= ∅

γ ` τ δ x; S : ΓS

ηSCompoundVarDefInit
γ ` e : (τ, δ) γ[x 7→ (τ, δ var)] ` S : ΓS ΓS 6= ∅

γ ` τ δ x = e; S : ΓS

The third case considers some regular statement following the rest of the compound statement. The
type of the regular statement is expected to include fallthru, otherwise the rest of the statements
would be unreachable code. The ηSCompound rule also does not allow empty statements (with
statement type ∅) to precede any other statements.

ηSCompound
γ ` S : ΓS fallthru ∈ ΓS γ ` S′ : Γ′S

γ ` S S′ : (ΓS \ {fallthru}) ∪ Γ′S

For expression statements, it is only checked whether the expression is valid. The type for expression
statements is defined just to be {fallthru}:

ηSExpr
goodexpr(γ, e)

γ ` e : {fallthru}

All guards (conditional expressions) in statements are checked to be of type (public, bool). The
security type is enforced to be public to prevent information leakage from control flow in the
underlying virtual machine. Let the predicate goodguard(γ, e) check whether the type of the given
expression e is (public, bool) in the given type environment γ, i.e. that γ ` e : (public, bool) holds.

19

The type of if statements is determined by the types of its branches. First, it is required that the
branches are not empty. If one or both branches are found of type ∅, the statement should be refactored
by the programmer for code clarity. For if statements without an else branch, it is still possible
that the statements in the first branch are not executed, therefore the type of the if statement must
also contain fallthru. For if statements with both branches, the type of the whole if statement is
just the set union of the types of its two branches.

ηSIf
goodguard(γ, e) γ ` S : ΓS ΓS 6= ∅

γ ` if (e) S : ΓS ∪ {fallthru}

ηSIfElse
goodguard(γ, e) γ ` S : ΓS ΓS 6= ∅ γ ` S′ : Γ′S Γ′S 6= ∅

γ ` if (e) S else S′ : ΓS ∪ Γ′S

To further enforce a good programming style, the types of the bodies of all loops in SecreC are required
either to contain fallthru or continue or be ∅, meaning that it might be possible for the loop to do
more than one iteration. Otherwise, the loop can be substituted with acyclic code. The bodies of the
loops also filter out break and continue from the type of the loop body. Hence, in principle, the type
of a loop is {fallthru, return} if the type of the body of the loop contains return, and {fallthru}
otherwise.

Let ΓB denote the type of the loop body for all static checking rules for loops, and ΓL denote the
set (ΓB \ {break, continue}) ∪ {fallthru}, which is the type of the entire loop. Let the predicate
goodbody(ΓB) check whether (ΓB = ∅) ∨ (ΓB ∩ {continue, fallthru} 6= ∅) holds for the given ΓB .

The static checking rules for while and do-while loops are identical:

ηSWhile
goodguard(γ, e) γ ` S : ΓB goodbody(ΓB)

γ ` while (e) S : ΓL

ηSDoWhile
goodguard(γ, e) γ ` S : ΓB goodbody(ΓB)

γ ` do S while (e) : ΓL

The most complex loop in SecreC is the for loop. Since all the three expressions are optional, we have
formulated a separate rule for each such case, and have a total of eight rules. If present, the first and
last expressions are only checked for validity. The second expression is the loop guard, and is checked
just like guards in other statements. When the guard is omitted, the respective rules ensure, that the
type of the body of the loop contains either break or return to catch trivial cases of non-terminating
loops:

ηSFor

goodexpr(γ, e)
goodguard(γ, e′)
goodexpr(γ, e′′)
γ ` S : ΓB

goodbody(ΓB)

γ ` for (e; e′; e′′) S : ΓL
ηSFor2

goodguard(γ, e′)
goodexpr(γ, e′′)
γ ` S : ΓB

goodbody(ΓB)

γ ` for (; e′; e′′) S : ΓL

20

ηSFor3

goodexpr(γ, e)
goodexpr(γ, e′′)
γ ` S : ΓB

goodbody(ΓB)
ΓB ∩ {break, return} 6= ∅

γ ` for (e;; e′′) S : ΓL
ηSFor4

goodexpr(γ, e′′)
γ ` S : ΓB

goodbody(ΓB)
ΓB ∩ {break, return} 6= ∅

γ ` for (;; e′′) S : ΓL

ηSFor5

goodexpr(γ, e)
γ ` S : ΓB

goodbody(ΓB)
ΓB ∩ {break, return} 6= ∅

γ ` for (e;;) S : ΓL
ηSFor6

γ ` S : ΓB
goodbody(ΓB)

ΓB ∩ {break, return} 6= ∅

γ ` for (;;) S : ΓL

ηSFor7

goodexpr(γ, e)
goodguard(γ, e′)
γ ` S : ΓB

goodbody(ΓB)

γ ` for (e; e′;) S : ΓL
ηSFor8

goodguard(γ, e′)
γ ` S : ΓB

goodbody(ΓB)

γ ` for (; e′;) S : ΓL

3.2.5 Checking programs

Similarly to the techniques described in Subsection 3.2.4, the static checking of programs is also
performed in a sequential manner – on a definition-by-definition basis. This is done by checking
each global variable or procedure definition by itself and then checking the rest of the program in
a type environment updated with all previous definitions. Checking starts with a predefined type
environment γ0 which may also be empty, i.e. with an empty domain, meaning that there are no
predefined variables or procedures.

We denote the domain of a (partial) function f by dom(f), and use the meta-variable P to denote
program fragments.

For global variable definitions without initializer expressions, only the type environment γ is updated
with the variable being defined, and the rest of the program is checked in the updated type
environment:

ηVarDef
γ[x 7→ (τ, δ var)] ` P : ΓP

γ ` τ δ x; P : ΓP

Static checking of global variable definitions with initializer expressions is performed as without
initializer expressions, with the only exception, that the initializer expression is first checked in the
type environment before updating it.

ηVarDefInit
γ ` e : (τ, δ) γ[x 7→ (τ, δ var)] ` P : ΓP

γ ` τ δ x = e; P : ΓP

For procedure definitions, it is first verified that the type environment does not already contain a
procedure with the same signature (its mangled identifier). Secondly, it is verified that no two names
for the procedure parameters are equal, ensuring that the parameters do not hide each other. Thirdly,

21

the body of the function is type-checked to verify its internal structure and that it always returns a
value of the correct type (or falls through without returning in case the return type is void). Finally,
the program following this definition is checked in the type environment updated with this procedure.

An updated type environment is used for type-checking the procedure body. This type environment
is not only updated with the definition of the current procedure (to allow recursion), but also with the
procedure parameters. To type-check all the return statements in the function body we also extend
the type environment using thisproc to point to the type of the enclosing procedure. For procedures
returning a value in rule ηProcdef, the body of the procedure must be of statement type return, while
for void procedures in rule ηProcdefVoid, the body of the procedure might also be of type fallthru.
An additional check ensures that a procedure named main taking no parameters can only be of void
return type.

ηProcdef

Mf 6∈ dom(γ)
|{p1, . . . , pn}| = n

(f 6= main) ∨ (n > 0)
γc ` S : {return}

γ′ ` P : ΓP
γ ` τ δ f(τ1 δ1 p1, . . . , τn δn pn) {S} P : ΓP

ηProcdefVoid

Mf 6∈ dom(γ)
|{p1, . . . , pn}| = n

γc ` S : ΓS
ΓS ⊆ {fallthru, return}

γ′ ` P : ΓP
γ ` void f(τ1 δ1 p1, . . . , τn δn pn) {S} P : ΓP

where

Mf =M(f, δ1, . . . , δn)

γ′ = γ[f 7→ proc]
[
Mf 7→ ρ

]
γc = γ′[thisproc 7→ ρ][p1 7→ (τ1, δ1)] · · · [pn 7→ (τn, δn)]

ρ =

{
((τ1 × . . .× τn)→ τ, (δ1 × . . .× δn)→ δ) for Procdef
((τ1 × . . .× τn)→ (), (δ1 × . . .× δn)→ ()) for ProcdefVoid

After checking whether all the top-level definitions in the SecreC program are correct, static checking
verifies that a function called ”main” taking no parameters and returning no value exists:

ηProgEnd
γ(M(main, ())) = (()→ (), ()→ ())

γ ` ε : prog

22

4 Natural semantics

For the natural semantics (or big-step semantics), we use → to denote different transitions of state,
and →∗ to denote these transitions being applied one or multiple times. Transitions for evaluating
expressions are denoted as→E , transitions for evaluating defining variables and procedures are denoted
as →DV and →DP respectively, transitions for evaluating statements are denoted as →S , and the
transitions for evaluating the top level of the program are denoted by → only.

In this section, we first describe a more flexible way to handle variables, and then continue to present
evaluation rules for SecreC expressions, variable definitions, statements, procedure definitions and the
program as a whole.

4.1 Locations, stores and environments

In SecreC, variables hold values of certain types according to the type of the variable itself. In this
section we extend this notion with locations and stores in the fashion described in [?, ?]. First of all,
let us consider locations which can be thought of as memory addresses, each of them pointing to a
single memory cell capable of holding exactly one value of any type. Depending on the security type
of the data held in the cell, we can partition the set of locations (loc) into private locations locpri and
public locations locpub. A special null location is used for the location returned by void procedures,
meaning “points to nothing”:

loc = locpub ∪ locpri ∪{null}

We also define a function getloc(l) which returns the type of the location l given to it:

getloc(l) =

locpri if l ∈ locpri
locpub if l ∈ locpub
{null} if l = null

Let an abstract store denoted by µ be a partial function from the set of locations to the set of values
in each of these locations:

µ : loc ↪→ val

Let the function newlocpub (µ) return a new public location, that is not yet in the domain of µ and
let the function newlocpri (µ) return a new private location, that is not in the domain of µ. We also
define a helper function named newloc:

newloc(τ, µ) =

{
newlocpub(µ) if τ = public
newlocpri(µ) if τ = private

We define another partial function, the variable environment named envV that, for each scanner
identifier denoting a variable, stores the location of the value for that variable:

envV : idS ↪→ loc

Given the store µ and variable environment envV , variables in SecreC can now be considered to
denote locations in store which hold the actual value of the variable. Formally, the value of variable

23

x is µ(envV (x)).

Besides providing means for specifying rules for declassification and classification in subsection 4.2.1,
the notion of locations and stores is currently not of much use in the semantics. However, it will
yield a more seamless transition in the future, if formal support for arrays and references is added to
SecreC.

We also define a procedure environment envP to be a partial function from the set of all mangled
identifiers to the set of procedure definitions:

envP : idM ↪→ ((p1, . . . , pn) , S, γ′, env′V , env′P)

Procedure definitions are in the form of 5-tuples ((p1, . . . , pn) , S, γ′, env′V , env′P), where p1, . . . , pn are
the identifiers of the procedure parameters, S is the body of the procedure. γ′, env′V and env′P are
respectively the type environment, the variable environment and the procedure environment for the
procedure body at the place of the procedure definition.

In Subsection 3.2.2 we have defined the type environment γ and have shown how to update it. We now
define updating the environments envV and envP , and the store µ analogously, using the following
three equations:

envV [x 7→ c](x′) =

{
c if x′ = x

envV (x′) if x′ 6= x
envP [f 7→ d](f ′) =

{
d if f ′ = f

envP (f ′) if f ′ 6= f

µ[l 7→ v](l′) =

{
v if l′ = l

µ(l′) if l′ 6= l

4.2 Evaluation of expressions

In SecreC, no new variables and procedures can be defined or redefined by expressions alone. Therefore,
the environments γ, envV and envP are constant during the evaluation of expressions. Of course,
expressions may be viewed as implicitly creating some temporary variables, but since those are not
needed to be accessible from outside the expressions, it is not necessary to add them to the these
environments at this point.

However, the values of variables can be changed, meaning that store µ is mutable, due to procedure
calls and assignment expressions. Hence, state transitions for expressions given in the form of

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉

denote that in the environments γ, envV and envP , and for the initial state of the store µ, evaluation
of expression e results in the changed store µ′ where the value corresponding to the expression is
stored at location l. If the evaluation of expression e results in no value (e.g. when e is a procedure
call to a procedure with the return type of void) then l is null.

For unary, arithmetic and assignment expressions, we use a helper function E which, given an
expression with values to operate on, returns the resulting value of the expression. For operands
of type bool, E works as in the C++ programming language[?] for all the defined operations (!, ==,
!=, <, <=, >, >=, && and ||). When both operands v1 and v2 are of type string then E(v1 + v2)
returns a concatenated string v1v2. For binary == and != on strings, function E returns whether

24

given strings are equal or unequal, for <, <=, >= and > on strings, function E returns whether the
strings are respectively ordered in a lexicographical manner. For all other operations allowed by the
SecreC type system in Subsection 3.2.3, the result of E of some operation is identical to the result of
the corresponding expression in C++, given that the SecreC types unsigned and int correspond to
32-bit unsigned and int types in C++.

4.2.1 Declassification and classification

Since all data is either stored in the private data space or the public data space in the Sharemind virtual
machine, we need mechanisms to move data from one data space to the other. The declassification
operator takes as input a private value, moves the value to public data space and returns it. To do
so, a new public location l′ ∈ locpub must be utilized:

EDeclassify
γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉 l′ = newlocpub (µ′) µ′′ = µ′[l′ 7→ µ′(l)]

γ, envV , envP ` 〈declassify(e), µ〉 →E 〈l′, µ′′〉

Contrary to declassification, classification of data (or moving data from public data space to private
data space) is an implicit operation according to the grammar of expressions given in Section 2.7.
Therefore, we cannot present syntax-directed rules for classification. In some rules in this section
we have explicitly noted that depending on the security types of subexpressions classification might
occur. For other rules in this section that perform implicit classification, we provide a new type of
state transition and a number of transition rules. These state transitions are in the form of

γ ` 〈τ, e, l, l′, µ, F 〉 →C 〈l′′, µ′〉

where τ is a security class, e is an expression, l, l′ and l′′ are locations, µ and µ′ are stores and
F ∈ {force, noforce}. It is presumed, that l holds the value of the expression e at some point during
the evaluation, so that if if e is of a public security type, then l ∈ locpub, otherwise l ∈ locpri. If
F = noforce, then location l′ is the location where the classified value must be written to, should
classification be needed. If F = force then the value at l should be written to l′ regardless of whether
it was classified or not. The resulting state consists of a potentially changed store µ′, and a location
l′′ which holds the classified value. Depending on F and whether classification was performed, l′′ is
either l or l′.

The EClassify rule denotes that if τ is private, but the expression e is of a public security type,
then the value µ(l) should be classified. The classification occurs by copying the value to the location
l′ ∈ locpri in store µ. The resulting state consists of l′ and the changed store:

EClassify
γ ` e : (public, δ) µ′ = µ[l′ 7→ µ(l)]
γ ` 〈private, e, l, l′, µ, F 〉 →C 〈l′, µ′〉

In other cases, when the security type of expression e is equal to τ , classification is not needed.
However, depending on the parameter F , we might still need to copy the value to l′. The EDontClassify
rule deals with all these cases:

EDontClassify
γ ` e : (τ, δ)

γ ` 〈τ, e, l, l′, µ, F 〉 →C 〈l′′, µ′〉

25

where

l′′ =

{
l if F = noforce

l′ if F = force

µ′ =

{
µ if F = noforce

µ[l′ 7→ µ(l)] if F = force

4.2.2 Variables and constants

For identifiers x in expressions where x is not used in a procedure call as the procedure identifier, x
must appear in the type environment and denote a variable. This is statically checked at compilation
time by the ηERValue rule in Subsection 3.2.3. The ERValue rule only queries the location of the
value of x is from envV :

ERValue
l = envV (x)

γ, envV , envP ` 〈x, µ〉 →E 〈l, µ〉

For literal values v, we currently have a rule only for completeness. Namely, because all other
expression rules we give in this chapter operate on locations rather than values, it is simplest for
us to specify the following rule:

EConst
l = newlocpub (µ) µ′ = µ[l 7→ v]
γ, envV , envP ` 〈v, µ〉 →E 〈l, µ′〉

It must, of course, be noted, that in the output of decent compilers this change of store (or memory) is
optimized out, because they usually output instructions, that take constants as immediate operands
and do not need constant values to appear at certain locations in store.

4.2.3 Simple expressions

In unary expressions, first the underlying subexpression is evaluated, and then the corresponding
unary operation ~ ∈ {-, !} is done on the value of the evaluated subexpression using the helper
function E and the result is stored in a new memory location l′ ∈ getloc(l):

EUnary

γ ` e : (τ, δ)
γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉

l′ = newloc(τ, µ′)
µ′′ = µ′[l′ 7→ E(~ (µ′(l)))]

γ, envV , envP ` 〈~e, µ〉 →E 〈l′, µ′′〉

For all arithmetic binary operations ~ ∈ {+, -, *, /, %} the operands are first evaluated in order from
left to right. Secondly, if needed, classification is performed on one of them. Finally, the corresponding
binary operation is executed on the (potentially classified) values and the result is stored in a new
memory location l′′ ∈ L where L = getloc (lc) = getloc (l′c):

26

EArithBinary

γ ` e : (τ, δ)
γ ` e′ : (τ ′, δ′)

γ, envV , envP ` 〈e, µ〉 →E

〈
l, µ(1)

〉
γ, envV , envP `

〈
e′, µ(1)

〉
→E

〈
l′, µ(2)

〉
γ `

〈
τ ′, e, l,newlocpri

(
µ(2)

)
, µ(2), noforce

〉
→C

〈
lc, µ

(3)
〉

γ `
〈
τ, e′, l′,newlocpri

(
µ(3)

)
, µ(3), noforce

〉
→C

〈
l′c, µ

(4)
〉

l′′ = newloc
(
τ ⊕ τ ′, µ(4)

)
µ′ = µ(4)

[
l′′ 7→ E

((
µ(4)(lc)

)
~
(
µ(4)(l′c)

))]
γ, envV , envP ` 〈e~ e′, µ〉 →E 〈l′′, µ′〉

4.2.4 Logical expressions

For binary logical operators && and || two types of evaluation rules exist depending on the security
type of the first subexpression. Namely, when the first subexpression is of public type, we can in some
cases shorthand the logical expression. For example, in e1 && e2 if the value of e1 is found to be false,
or if in e1 || e2 if the value of e1 is found to be true there is no need to evaluate the e2-s, because the
result of the logical expression is already determined by the value of the first expression. However, at
execution time this requires a control flow change depending on the value of the first subexpression.
Because conditional branching on private conditions is prohibited in Sharemind to prevent side-channel
information leakage, we only allow this kind of shorthand semantics if the security type for the first
subexpression is public. If the security type for the first subexpression is private, we always need
to evaluate the second subexpression. This issue is even more clear when expressions with side-effects
(i.e. procedure calls and assignments) are taken into account. For example, the expression statement
e1 && f(); is equivalent to the statement if (e1) f(); in case of shorthand semantics.

Hence, for logical conjunction and logical disjunction where the first subexpression is of private
security type, we evaluate both subexpressions from left to right and calculate the result as for
arithmetic operations. The result is analogously stored in a new memory location l′′ ∈ locpri:

EAndPrivate

γ ` e : (private, bool)
γ, envV , envP ` 〈e, µ〉 →E

〈
l, µ(1)

〉
γ, envV , envP `

〈
e′, µ(1)

〉
→E

〈
l′, µ(2)

〉
γ `

〈
private, e′, l′,newlocpri

(
µ(2)

)
, µ(2), noforce

〉
→C

〈
l′′, µ(3)

〉
l′′′ = newlocpri

(
µ(3)

)
µ′ = µ(3)

[
l′′′ 7→ E

((
µ(3)(l)

)
&&
(
µ(3)(l′′)

))]
γ, envV , envP ` 〈e && e′, µ〉 →E 〈l′′′, µ′〉

EOrPrivate

γ ` e : (private, bool)
γ, envV , envP ` 〈e, µ〉 →E

〈
l, µ(1)

〉
γ, envV , envP `

〈
e′, µ(1)

〉
→E

〈
l′, µ(2)

〉
γ `

〈
private, e′, l′,newlocpri

(
µ(2)

)
, µ(2), noforce

〉
→C

〈
l′′, µ(3)

〉
l′′′ = newlocpri

(
µ(3)

)
µ′ = µ(3)

[
l′′′ 7→ E

((
µ(3)(l)

)
||
(
µ(3)(l′′)

))]
γ, envV , envP ` 〈e || e′, µ〉 →E 〈l′′′, µ′〉

When the first subexpression has a public security type, we use the shorthand version. We first
evaluate the first expression and if its resulting value is false for conjunction or true for disjunction
we return the result without evaluating the second subexpression:

27

EAnd

γ ` e : (public, bool)
γ ` e′ : (τ, bool)

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = false

γ ` 〈τ, e, l,newlocpri(µ′) , µ′, noforce〉 →C 〈lc, µ′′〉
γ, envV , envP ` 〈e && e′, µ〉 →E 〈lc, µ′′〉

EOr

γ ` e : (public, bool)
γ ` e′ : (τ, bool)

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

γ ` 〈τ, e, l,newlocpri(µ′) , µ′, noforce〉 →C 〈lc, µ′′〉
γ, envV , envP ` 〈e || e′, µ〉 →E 〈lc, µ′′〉

When the first subexpression is of public security type, but the result of evaluating the first expression
is true for conjunction or false for disjunction, we also have to evaluate the second subexpression,
and return its result as the result for the whole logical expression:

EAnd2

γ ` e : (public, bool)
γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉

µ′(l) = true
γ, envV , envP ` 〈e′, µ′〉 →E 〈l, µ′′〉

γ, envV , envP ` 〈e && e′, µ〉 →E 〈l, µ′′〉

EOr2

γ ` e : (public, bool)
γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉

µ′(l) = false
γ, envV , envP ` 〈e′, µ′〉 →E 〈l, µ′′〉

γ, envV , envP ` 〈e || e′, µ〉 →E 〈l, µ′′〉

It might not be intuitively clear whether or not the shorthand version is used in logical expressions.
Therefore, programmers writing SecreC programs must exercise caution regarding this.

4.2.5 Ternary operation

The ternary operation in SecreC is an expression taking a conditional expression of type (public, bool)
and two other subexpressions with the same data type (as described in Subsection 3.2.3). First,
the conditional expression is evaluated, and if its value was true, then the second subexpression is
evaluated and its value is returned:

ETernaryTrue

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

γ, envV , envP ` 〈e′, µ′〉 →E 〈l′, µ′′〉
γ ` e′′ : (τ, δ)

γ ` 〈τ, e′, l′,newlocpri(µ′′) , µ′′, noforce〉 →C 〈lc, µ′′′〉
γ, envV , envP ` 〈e ? e′ : e′′, µ〉 →E 〈lc, µ′′′〉

Otherwise, if the value of the conditional expression evaluated to false, then the third subexpression
is evaluated and its value is returned:

28

ETernaryFalse

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = false

γ, envV , envP ` 〈e′′, µ′〉 →E 〈l′′, µ′′〉
γ ` e′ : (τ, δ)

γ ` 〈τ, e′′, l′′,newlocpri(µ′′) , µ′′, noforce〉 →C 〈lc, µ′′′〉
γ, envV , envP ` 〈e ? e′ : e′′, µ〉 →E 〈lc, µ′′′〉

4.2.6 Assignment expressions

For regular assignment expressions, we first evaluate the expression being assigned, then assign its
value to the variable being assigned to. To do this, we change the value of the variable in the store at
the location we get from the variable environment envV . Depending on the security type of the variable
and the security type of the expression, we may also have to classify the value before assignment.

EAssign

γ(x) = (τ, δ var)
γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉

γ ` 〈τ, e, l, envV (x) , µ′, force〉 →C 〈l′, µ′′〉
γ, envV , envP ` 〈x = e, µ〉 →E 〈l′, µ′′〉

For arithmetic assignment expressions, before doing the actual assignment, we exploit the EArithBi-
nary rule to perform the arithmetic operation and any needed classification:

EAssignArith
γ, envV , envP ` 〈x~ e, µ〉 →E 〈l, µ′〉

γ, envV , envP ` 〈x ~= e, µ〉 →E 〈l, µ′[envV (x) 7→ µ′(l)]〉

4.2.7 Procedure calls

The inference rule for the semantics of procedure calls in SecreC is notationally the most complex rule
in these semantics. For readability, we have boxed and numbered the premises of the inference rule
into five distinct parts:

29

EProc

1.

γ, envV , envP ` 〈e1, µ〉 →E

〈
l(1), µ(1)

〉
...

γ, envV , envP `
〈
en, µ

(n−1)
〉
→E

〈
l(n), µ(n)

〉

2.

γ ` e1 : (τ (1)
a , δ

(1)
a)

...
γ ` en : (τ (n)

a , δ
(n)
a)

3. γ
(
M
(
f, δ(1)a , . . . , δ(n)

a

))
=

((
τ (1)
p , . . . , τ (n)

p

)
→ τp,

(
δ(1)a , . . . , δ(n)

a

)
→ δa

)
or((

τ (1)
p , . . . , τ (n)

p

)
→ (),

(
δ(1)a , . . . , δ(n)

a

)
→ ()

)

4.

〈τ (1)
p , e1, l

(1),newloc
(
τ

(1)
p , µ(n)

)
, µ(n), force〉 →C 〈l(1)

′
, µ(n+1)〉

...

〈τ (n)
p , en, l

(n),newloc
(
τ

(n)
p , µ(2n−1)

)
, µ(2n−1), force〉 →C 〈l(n)′ , µ(2n)〉

5.

envP
(
M
(
f, δ

(1)
a , . . . , δ

(n)
a

))
= ((p1, . . . , pn) , S, γ′, env′V , env′P)

env′′V = env′V
[
p1 7→ l(1)

′
]
· · ·
[
pn 7→ l(n)′

]
〈
S, γ′, env′′V , env′P , µ

(2n)
〉
→∗S 〈l, µ′〉

return

γ, envV , envP ` 〈f(e1, . . . , en), µ〉 →E 〈l, µ′〉

For procedure calls, first, all the arguments are evaluated in order from left to right as shown in Box
1 in the EProc rule. Next, depending on the types of the arguments and the type of the procedure
as inferred in Boxes 2 and 3, for each parameter a new location in store is allocated and the value of
the respective argument is copied to that location in Box 4. The locations allocated are either private
or public, depending on the security types of the parameters. Recall from Subsection 3.2.3 that the
security types of the parameters and the arguments may differ and hence, we allow classification of
values. Also, the order in which the new locations are initialized and the order of classification do not
actually matter.

In Box 5, first the identifiers p1, . . . , pn of the procedure parameters, the procedure body S and
the respective environments are inferred from envP . Next, based on the variable environment of
the procedure, a new variable environment env′′V is created in which the parameters are bound to the
newly allocated locations corresponding to the values of the arguments. Finally, the procedure body is
executed. If the procedure executed returns, the return value is taken to be the value of the expression.
After executing the procedure, the locations allocated for the arguments and the information they
point to can safely be discarded, because they will not be available elsewhere.

The actual procedure to execute can always be determined statically, similarly to what is described
in Subsection 3.2.3. Here, the procedure environment envP can be viewed as carrying with it only
static information about the procedure (i.e. when we can consider the locations of global variables
and procedure parameters to be fixed values). The semantics for procedure definitions are given in
detail in Subsection 4.5.

We have no separate rule for calling procedures of type void, since the latter always return a null
location as defined later by the SReturnVoid rule in Section 4.4.4. Type checking rules in Section

30

3.2 already ensure that the returned null location is not used anywhere to read a value. Hence,
we use the null location only to reason about such procedures and it is generally not advised for
implementations to factually return a null value.

4.3 Evaluation of variable definitions

For variable definitions, two semantic state transition rules exist – one for variable definition and one
for variable definition and initialization. Both rules update the type environment and the variable
environment envV with the variable being defined, initializing the variable at a new (or unused)
location l. The state transitions for variable definitions are given in the form of

envP ` 〈DV ;, γ, envV , µ〉 →DV 〈γ′ env′V , µ
′〉

where DV ; is the variable definition with the semicolon following it, γ, envV and µ are respectively the
type environment, variable environment and store before handling the definition, their primed versions
γ′, env′V and µ′ correspond to the environments and store after handling the variable definition.

The first rule initializes the value for the variable to its default value in the store:

VarDef
l = newloc(τ, µ)

envP ` 〈τ δ x, γ, envV , µ〉 →DV 〈γ[x 7→ (τ, δ var)] , envV [x 7→ l] , µ[l 7→ DEFδ]〉

where DEFδ is the default value for a variable of data type δ. DEFδ is currently defined as follows:

DEFbool ≡ false DEFint ≡ 0

DEFunsigned int ≡ 0 DEFstring ≡ ""

The second rule for variable definition and initialization is almost identical to the previous rule, with
the exception that before updating the type and variable environments, the initializer expression is
evaluated to some value which is – instead of the default value – assigned to the newly-defined variable.
If needed, the value is classified:

VarDefInit

γ ` e : (τ ′, δ)
γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉

〈τ, e, l,newloc(τ, µ′) , µ′, force〉 →C 〈l′, µ′′〉
envP ` 〈τ δ x = e, γ, envV , µ〉 →DV 〈γ[x 7→ (τ, δ var)] , envV [x 7→ l′] , µ′′〉

4.4 Evaluation of statements

State transitions for statements have five different forms, all of which we can denote as

envP ` 〈S, γ, envV , µ〉 →S ?

where S is the statement (or consecutive statements) left to execute and ? corresponds to the resulting
state. Since procedure definitions are only allowed in the top level of the program, envP stays constant
while evaluating statements. The resulting state ? has five different forms:

1. The next form is denoted by 〈S′, γ′, env′V , µ
′〉, where S′ is the statement (or consecutive

statements) still left to execute, γ′ and env′V are the resulting type and variable environment,

31

and µ′ is the resulting store.

2. The empty form is denoted by 〈γ′, env′V , µ
′〉, which is identical to the first form, with the only

exception that there are no statements left to execute.

3. The return form, written as 〈l, µ′〉return denotes that the evaluation of the statement S resulted
in store µ′ and some return statement being called and the location l being returned which
holds the return value in µ′. For void procedures, l is null.

4. The break form, written as 〈µ′〉break denotes that the evaluation of the statement S resulted
in store µ′ and some break statement being called.

5. The continue form, written as 〈µ′〉continue denotes that the evaluation of the statement S
resulted in store µ′ and some continue statement being called.

Of these five forms, only the next form can also appear on the left side in state transitions, hence the
other forms are not subject to further rewriting. However they can still appear as conditions in the
semantic rules for statements.

4.4.1 Compound statements

First, let us consider compound statements, which correspond to the right-hand sides of the
〈statement list〉 nonterminal rule in Section 2.6 with two distinct parts. More specifically, this
means statements followed by statements, statements followed by compound statements, variable
definitions followed by statements and variable definitions followed by compound statements.

If the first part of the compound statement evaluates to an empty form, the compound statement
evaluates to the second part of itself. If the first part of the compound statement is a variable definition,
the type environment γ will be updated to γ′ and the variable environment envV will be updated to
env′V . Except where the first part is an empty statement, the store µ will also be transformed into µ′:

SCompound
envP ` 〈S, γ, envV , µ〉 →∗S 〈γ′, env′V , µ

′〉
envP ` 〈S; S′, γ, envV , µ〉 →S 〈S′, γ′, env′V , µ

′〉

If the first part of the compound statement evaluates to a return, break or continue form, that
evaluation result is also taken to be the result for the whole compound statement. This is described
by the following three rules:

SCompoundReturn
envP ` 〈S, γ, envV , µ〉 →∗S 〈l, µ′〉

return

envP ` 〈S; S′, γ, envV , µ〉 →S 〈l, µ′〉return

SCompoundContinue
envP ` 〈S, γ, envV , µ〉 →∗S 〈µ′〉

continue

envP ` 〈S; S′, γ, envV , µ〉 →S 〈µ′〉continue

SCompoundBreak
envP ` 〈S, γ, envV , µ〉 →∗S 〈µ′〉

break

envP ` 〈S; S′, γ, envV , µ〉 →S 〈µ′〉break

32

4.4.2 Statement blocks

Rules for blocks of statements are similar to rules for compound statements. A major exception to
this is the case where the result of evaluating the body of the block is in the empty form. In this case,
any modifications to the environments are discarded. Only changes to the store are kept, but since
all local variables defined inside the block are unreachable from the outside, the locations in store for
those variables may safely be reused for new variables later. What this describes is variables going
out of scope.

SBlock
envP ` 〈S, γ, envV , µ〉 →∗S 〈γ′, env′V , µ

′〉
envP ` 〈{S}, γ, envV , µ〉 →S 〈γ, envV , µ′〉

If the result of evaluating the body of the block is in either return, break or continue form, it is
propagated by the respective SBlockReturn, SBlockBreak and SBlockContinue rules:

SBlockReturn
envP ` 〈S, γ, envV , µ〉 →∗S 〈l, µ′〉

return

envP ` 〈{S}, γ, envV , µ〉 →S 〈l, µ′〉return

SBlockContinue
envP ` 〈S, γ, envV , µ〉 →∗S 〈µ′〉

continue

envP ` 〈{S}, γ, envV , µ〉 →S 〈µ′〉continue

SBlockBreak
envP ` 〈S, γ, envV , µ〉 →∗S 〈µ′〉

break

envP ` 〈{S}, γ, envV , µ〉 →S 〈µ′〉break

4.4.3 Local variable definitions

For local variable definitions, the rules in Subsection 4.3 are used just like in the global scope (see
Section 4.6):

SVarDef
envP ` 〈DV , γ, envV , µ〉 →DV 〈γ′, env′V , µ

′〉
envP ` 〈DV ;, γ, envV , µ〉 →S 〈γ′, env′V , µ

′〉

4.4.4 Return statements

Return statements transform the state to a final return form. Inside void procedures, the store is not
changed and a null location is returned:

SReturnVoid

envP ` 〈return; S, γ, envV , µ〉 →S 〈null, µ〉return

Inside non-void procedures, first the given expression is evaluated and then the location of its value
is returned together with the resulting state of the store, which might be have changed as a result of
evaluating the expression in the statement. Additionally, the value of the expression may need to be
moved to the private data domain:

33

SReturn

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
γ(thisproc) = ((τ1, . . . , τn)→ τ, (δ1, . . . , δn)→ δ)
〈τ, e, l,newloc(τ, µ′) , µ′, noforce〉 →C 〈l′, µ′′〉

envP ` 〈return e;, γ, envV , µ〉 →S 〈l′, µ′′〉return

4.4.5 Break and continue statements

Break and return statements transform the state to the final break form or return form respectively:

SBreak

envP ` 〈break;, γ, envV , µ〉 →S 〈µ〉break

SContinue

envP ` 〈continue;, γ, envV , µ〉 →S 〈µ〉continue

4.4.6 Expression statements

For expression statements, only the expression is evaluated, and thereby only the store is changed:

SExpr
γ, envV , envP ` 〈e, µ〉 →E 〈v, µ′〉

envP ` 〈e;, γ, envV , µ〉 →S 〈γ, envV , µ′〉

4.4.7 if-statements

For all if-statements, first the conditional expression is evaluated. Further action is taken depending
on the boolean result of conditional expression.

For if-statements with only one branch, that branch is only evaluated if the conditional expression
evaluates to true. The result state of evaluating the branch is also made the result state of the
whole if-statement. However, if the branch evaluates to a state in the empty form, its updates to
the environments are discarded. If the conditional expression evaluates to false, the branch is not
evaluated, and the resulting state will be in the empty form with the environments left unchanged.
The formal semantic rules for if-statements with one branch are as follows:

SIfTrue

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S, γ, envV , µ′〉 →∗S 〈γ′, env′V , µ
′′〉

envP ` 〈if (e) S, γ, envV , µ〉 →S 〈γ, envV , µ′′〉

SIfTrueBreak

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S, γ, envV , µ′〉 →∗S 〈µ′′〉
break

envP ` 〈if (e) S, γ, envV , µ〉 →S 〈µ′′〉break

SIfTrueContinue

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S, γ, envV , µ′〉 →∗S 〈µ′′〉
continue

envP ` 〈if (e) S, γ, envV , µ〉 →S 〈µ′′〉continue

34

SIfTrueReturn

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S, γ, envV , µ′〉 →∗S 〈v, µ′′〉
return

envP ` 〈if (e) S, γ, envV , µ〉 →S 〈v, µ′′〉return

SIfFalse
γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉 µ′(l) = false

envP ` 〈if (e) S, γ, envV , µ〉 →S 〈γ, envV , µ′〉

The formal semantic rules for if-statements with two branches are similar, except that the branch
chosen depends on the value of the conditional expression:

SIfElseTrue

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S1, γ, envV , µ′〉 →∗S 〈γ′, env′V , µ
′′〉

envP ` 〈if (e) S1 else S2, γ, envV , µ〉 →S 〈γ, envV , µ′′〉

SIfElseFalse

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = false

envP ` 〈S2, γ, envV , µ′〉 →∗S 〈γ′, env′V , µ
′′〉

envP ` 〈if (e) S1 else S2, γ, envV , µ〉 →S 〈γ, envV , µ′′〉

SIfElseTrueBreak

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S1, γ, envV , µ′〉 →∗S 〈µ′′〉
break

envP ` 〈if (e) S1 else S2, γ, envV , µ〉 →S 〈µ′′〉break

SIfElseFalseBreak

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = false

envP ` 〈S2, γ, envV , µ′〉 →∗S 〈µ′′〉
break

envP ` 〈if (e) S1 else S2, γ, envV , µ〉 →S 〈µ′′〉break

SIfElseTrueContinue

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S1, γ, envV , µ′〉 →∗S 〈µ′′〉
continue

envP ` 〈if (e) S1 else S2, γ, envV , µ〉 →S 〈µ′′〉continue

SIfElseFalseContinue

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = false

envP ` 〈S2, γ, envV , µ′〉 →∗S 〈µ′′〉
continue

envP ` 〈if (e) S1 else S2, γ, envV , µ〉 →S 〈µ′′〉continue

SIfElseTrueReturn

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S1, γ, envV , µ′〉 →∗S 〈l′, µ′′〉
return

envP ` 〈if (e) S1 else S2, γ, envV , µ〉 →S 〈l′, µ′′〉return

SIfElseFalseReturn

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = false

envP ` 〈S2, γ, envV , µ′〉 →∗S 〈l′, µ′′〉
return

envP ` 〈if (e) S1 else S2, γ, envV , µ〉 →S 〈l′, µ′′〉return

35

4.4.8 while-loops

As for if-statements, the conditional expression is evaluated first also for while-loops. If the
conditional expression evaluates to false, the state is transformed into an empty form:

SWhileFalse
γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉 µ′(l) = false
envP ` 〈while (e) S, γ, envV , µ〉 →S 〈γ, envV , µ′〉

If the conditional expression of the while-loop evaluates to true, four different cases must be observed,
depending on the outcome of evaluating the body of the loop. If the resulting state is in the return
form, it is also returned as the state for the while loop:

SWhileReturn

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S, γ, envV , µ′〉 →∗S 〈l, µ′′〉
return

envP ` 〈while (e) S, γ, envV , µ〉 →S 〈l, µ′′〉return

The evaluation of the loop body ends in a state in the empty form, if no return, break or continue
statement in the loop body was reached. In this case, all the changes done by the body to the
environments are discarded, and the loop is re-evaluated with the changed store. The same holds for
the case when a state in the continue form is reached:

SWhileTrue

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S, γ, envV , µ′〉 →∗S 〈γ′, env′V , µ
′′〉

envP ` 〈while (e) S, γ, envV , µ〉 →S 〈while (e) S, γ, envV , µ′′〉

SWhileContinue

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S, γ, envV , µ′〉 →∗S 〈µ′′〉
continue

envP ` 〈while (e) S, γ, envV , µ〉 →S 〈while (e) S, γ, envV , µ′′〉

If the evaluation of the body of the loop reaches a state in the break form, the changes to the
environments are discarded and an empty state is returned:

SWhileBreak

γ, envV , envP ` 〈e, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S, γ, envV , µ′〉 →∗S 〈µ′′〉
break

envP ` 〈while (e) S, γ, envV , µ〉 →S 〈γ, envV , µ′′〉

4.4.9 do-while-loops

Semantics for the do-while-loop are similar to the semantics of the while loop, with the only difference
being that the conditional expression is not checked before the very first evaluation of the do-while-
loop body. Hence, if the first execution of the loop body returns a state in the empty or continue
form, the rest of the loop can be handled just like a while-loop as described by the SDoWhile and
SDoWhileContinue rules:

SDoWhile
envP ` 〈S, γ, envV , µ〉 →∗S 〈γ′, env′V , µ

′〉
envP ` 〈do S while (e), γ, envV , µ〉 →S 〈while (e), γ, envV , µ′〉

36

SDoWhileContinue
envP ` 〈S, γ, envV , µ〉 →∗S 〈µ′〉

continue

envP ` 〈do S while (e), γ, envV , µ〉 →S 〈while (e), γ, envV , µ′〉

If the first execution of the do-while-loop body results in a state in the return form, that result is
also used as the result for the whole loop:

SDoWhileReturn
envP ` 〈S, γ, envV , µ〉 →∗S 〈l, µ′〉

return

envP ` 〈do S while (e), γ, envV , µ〉 →S 〈l, µ′〉return

If the first execution of the do-while-loop body results in a state in the break form, further evaluation
of the loop is skipped and a state in the empty form is returned:

SDoWhileBreak
envP ` 〈S, γ, envV , µ〉 →∗S 〈µ′〉

break

envP ` 〈do S while (e), γ, envV , µ〉 →S 〈γ, envV , µ′〉

4.4.10 for-loops

The for-loop is the most complex statement in SecreC, since all the subexpressions in its header are
optional. Nevertheless, in case the third expression is omitted, the for-loop is transformed into a
while-loop using the following four rules:

SForToWhile1
envP ` 〈for (e; e′;) S, γ, envV , µ〉 →S 〈e; while (e′) S, γ, envV , µ〉

SForToWhile2
envP ` 〈for (e;;) S, γ, envV , µ〉 →S 〈e; while (true) S, γ, envV , µ〉

SForToWhile3
envP ` 〈for (; e′;) S, γ, envV , µ〉 →S 〈while (e′) S, γ, envV , µ〉

SForToWhile4
envP ` 〈for (;;) S, γ, envV , µ〉 →S 〈while (true) S, γ, envV , µ〉

Two of the other cases, where both the third and the first expression are present, can also be eliminated
by transforming the for-loop to an equivalent compound statement consisting of the expression
statement corresponding to the first expression and the rest of the for-loop:

SForStart
envP ` 〈for (e; e′; e′′) S, γ, envV , µ〉 →S 〈e; for (; e′; e′′) S, γ, envV , µ〉

SForStart2
envP ` 〈for (e;; e′′) S, γ, envV , µ〉 →S 〈e; for (;; e′′) S, γ, envV , µ〉

But there is still one more case of the for-loop which can be eliminated. The case where only the
third expression is present, can be transformed into an equivalent for-loop with both the third and
second expressions present. The second expression will be the constant true:

SForToFor
envP ` 〈for (;; e′′) S, γ, envV , µ〉 →S 〈for (; true; e′′) S, γ, envV , µ〉

We have eliminated all variants of the for-loop except for the one where out of the three optional

37

expressions only the first one is omitted. This variant of the for-loop is what actually makes it distinct
from the while- and do-while-loops in SecreC.

For this variant of the for-loop, first the second expression is evaluated as a conditional expression.
If it evaluates to false, the state is transformed to an empty form:

SForFalse
γ, envV , envP ` 〈e′, µ〉 →E 〈l, µ′〉 µ′(l) = false

envP ` 〈for (; e′; e′′) S, γ, envV , µ〉 →S 〈γ, envV , µ′〉

If the second expression evaluates to true, we must again observe four different cases based on the
outcome of the evaluation of the loop body. First, when the result of that evaluation is in the return
form, the result for the evaluation of the whole loop is also in the return form:

SForReturn

γ, envV , envP ` 〈e′, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S, γ, envV , µ′〉 →∗S 〈l′, µ′′〉
return

envP ` 〈for (; e′; e′′) S, γ, envV , µ〉 →S 〈l′, µ′′〉return

Secondly, if the evaluation of the loop body results in a state in the break form, a state in the empty
form is returned:

SForBreak

γ, envV , envP ` 〈e′, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S, γ, envV , µ′〉 →∗S 〈µ′′〉
break

envP ` 〈for (; e′; e′′) S, γ, envV , µ〉 →S 〈γ, envV , µ′′〉

If the execution of the loop body results in a state in the empty form, the next iteration of the loop is
started. This is done by rewriting the current state into one in the next form, where the statement to
execute consists of the third expression of the loop as a statement expression, followed by the whole
loop as it is:

SForTrue

γ, envV , envP ` 〈e′, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S, γ, envV , µ′〉 →∗S 〈γ′, env′V , µ
′′〉

envP ` 〈for (; e′; e′′) S, γ, envV , µ〉 →S 〈e′′; for (; e′; e′′) S, γ, envV , µ′′〉

It is the case when the execution of the loop body results in a state in the continue form, that makes
the for-loop special. Although its result is analogous to the previous case, it is exactly because of the
continue-statements that the for-loop can’t be easily rewritten as a while or do-while-loop.

SForContinue

γ, envV , envP ` 〈e′, µ〉 →E 〈l, µ′〉
µ′(l) = true

envP ` 〈S, γ, envV , µ′〉 →∗S 〈µ′′〉
continue

envP ` 〈for (; e′; e′′) S, γ, envV , µ〉 →S 〈e′′; for (; e′; e′′) S, γ, envV , µ′′〉

4.5 Evaluation of procedure definitions

The semantic rule for procedures with non-void return type and with void return type are in principle
very similar:

38

Procdef
envV ` 〈τ δ f(τ1 δ1 p1, . . . , τn δn pn) {S}, γ, envP 〉 →DP 〈γ′, env′P 〉

ProcdefVoid
envV ` 〈void f(τ1 δ1 p1, . . . , τn δn pn) {S}, γ, envP 〉 →DP 〈γ′, env′P 〉

where

γ′ = γ[f 7→ proc][M(f, δ1, . . . , δn) 7→ ρ]

γc = γ′[thisproc 7→ ρ][p1 7→ (τ1, δ1)] · · · [pn 7→ (τn, δn)]

env′P = envP [M(f, δ1, . . . , δn) 7→ ((p1, . . . , pn) , S, γc, envV , env′P)]

ρ =

{
((τ1 × . . .× τn)→ τ, (δ1 × . . .× δn)→ δ) for Procdef
((τ1 × . . .× τn)→ (), (δ1 × . . .× δn)→ ()) for ProcdefVoid

Both rules properly update the type environment with the identifier and the mangled identifier for
the procedure. Another environment, γc, is also created for the scope of the procedure by updating γ
with the types for the parameters. The procedure environment env′P is an updated version of envP .
For the mangled identifier of the procedure, it is updated with a 5-tuple consisting of a list of the
identifiers (p1, . . . , pn) for the procedure parameters, the function body S, the type environment γc
for the body, the variable environment envV at the procedure definition and a reference to env′P itself.
Note that although env′P is self-referential, this does not cause any trouble in the semantics.

4.6 Evaluation of the program

Sequentially for the whole program, all variable and procedure definitions are read into the
environments. We start the evaluation of programs from a state

〈
P, γ0, env0

V , env0
P , µ0

〉
where P

is the whole program, γ0, env0
V and env0

P are the predefined environments and µ0 is the predefined
store. All these four predefined partial functions may be empty, i.e. have an empty domain. The
predefined type environment γ0 must be the same as used for static checking in Subsection 3.2.5.
There are two semantic rules for global variable and procedure definitions:

ProgramVarDef
envP ` 〈DV , γ, envV , µ〉 →DV 〈γ′, env′V , µ

′〉
〈DV ; P, γ, envV , envP , µ〉 → 〈P, γ′, env′V , envP , µ′〉

ProgramProcDef
envV ` 〈DP , γ, envP 〉 →DP 〈γ′, env′P 〉

〈DP P, γ, envV , envP , µ〉 → 〈P, γ′, envV , env′P , µ〉

Note, that defining global variables might also change the store because of initializer expressions which
can have side-effects in case of assignments and procedure calls.

Once all the global definitions are handled, a procedure call to the procedure main is evaluated. When
the evaluation of the procedure call expression is completed, the program finishes in an END state:

ProgramRun
γ, envV , envP ` 〈main(), µ〉 →E 〈null, µ′〉

〈ε, γ, envV , envP , µ〉 → END

39

5 Intermediate representation

For analysis purposes, the SecreC Analyzer first compiles all SecreC programs into a much simpler
SecreC intermediate representation (SIR). This intermediate representation consists of a symbol table
and the intermediate code – a list of SIR instructions. SIR described in this section is only meant to
be a data structure inside analysis tools and compilers, although it is not a difficult task to convert it
into some simple form of assembly code.

Translation of SecreC programs to the SecreC intermediate representation is done with respect to the
techniques described in [?]. More specifically, our analyzer uses quadruples to represent instructions,
incremental code generation, backpatching of jump instructions for all SecreC control structures,
and short-circuit code generation for the appropriate boolean expressions. Static checking is done
in parallel with code generation. Any errors encountered during translation and static checking are
logged and the ongoing process is halted.

5.1 Symbol table

The symbol table of the SecreC Analyzer is actually a tree of tables, where each subtree represents
a certain scope of the program. This has proven to ease the task of symbol lookup during static
checking and incremental code generation. Each node in the abstract syntax tree is statically checked
and incrementally translated in the context of the corresponding symbol table. The hierarchical
structure of the symbol table simplifies symbol lookup during static checking and intermediate code
generation. Figure 1 shows an example fragment of code with its relation to corresponding symbol
tables in a simplified form, and a table with definitions in scope for the lines of code.

Lines Line numbers
of of definitions
code in scope
1-2 none
3-4 2
5-6 2, 4
7-10 4, 6
11-12 6, 10
13 6, 10, 12
15-16 4, 6
17-18 4, 16
19 4, 16, 18

Figure 1: The hierarchy of symbol tables during translation and the corresponding table of definitions
in scope for each line of code.

The actual symbol tables used in the SecreC Analyzer contain four types of symbols for procedures,
regular variables, temporary variables and constants respectively. Symbols for regular variables are
accessible by their name, symbols for procedures are accessible by their mangled name. A different
kind of name mangling is used for the names of constant and temporary variable symbols. The
intermediate code instructions access symbols directly by reference.

Inherently, each symbol in the symbol table contains the SecreC type of the symbol. The types
implemented in our analyzer are modeled in a similar fashion with the formal hierarchical structures

40

described in Section 3.1. To track symbol declarations back to the original code, symbols in the
analyzer also refer to the node in the abstract syntax tree that caused their generation. This is most
useful for providing programmers feedback about the source code.

5.2 Instruction set

SIR instructions are quadruples in the form of (op, d, arg1, arg2), where op is the type of the instruction,
d, arg1 and arg2 usually refer to symbols or constants in the symbol table, or other instructions. To
track the instructions back to the abstract tree nodes that caused their generation, all instructions
in the SecreC Analyzer also have a reference to the node of in the abstract syntax tree of the parsed
SecreC program that caused their generation.

The intermediate representation, SIR, described in this section can be used to represent all SecreC
programs defined by the grammar, static checking and semantics rules in the previous sections.
Complex expressions can be written into simple expression instructions using temporary variables.
All control flow structures can be written in SIR by using conditional and unconditional jumps.

Instruction type Description Instruction type Description
MUL d = arg1 * arg2; DIV d = arg1 / arg2;

MOD d = arg1 % arg2; ADD d = arg1 + arg2;

SUB d = arg1 - arg2; EQ d = arg1 == arg2;

NE d = arg1 != arg2; LE d = arg1 <= arg2;

LT d = arg1 < arg2; GE d = arg1 >= arg2;

GT d = arg1 > arg2; LAND d = arg1 && arg2;

LOR d = arg1 || arg2; ASSIGN d = arg1;

UNEG d = !arg1; UMINUS d = -arg1;

CLASSIFY d = CLASSIFY(arg1); DECLASSIFY d = DECLASSIFY(arg1);

Table 1: SIR instructions for expressions.

Instructions for most expressions are given in Table 1. These instructions take at most two arguments,
arg1 and arg2 which refer to symbols or constants in the symbol table. The result for these expressions
is written to the symbol referred to by d.

Instruction type Description
JUMP goto d;
JT if (arg1) goto d;
JF if (!arg1) goto d;
JE if (arg1 == arg2) goto d;
JNE if (arg1 != arg2) goto d;
JLE if (arg1 <= arg2) goto d;
JLT if (arg1 < arg2) goto d;
JGE if (arg1 >= arg2) goto d;
JGT if (arg1 > arg2) goto d;

Table 2: SIR instructions for control flow.

For control flow structures and logical expressions where the left-hand side subexpression has the
public data type (see Subsection 4.2.4), SIR has an unconditional jump instruction and eight
conditional jump instructions, all of which are shown in Table 2. JT and JF only depend on one
boolean symbol arg1, other conditional jump instructions take symbols of types as defined in Appendix
A for the corresponding comparison operators. For all these jump instructions in SIR, d refers to the
SIR instruction to jump to in case of the unconditional jump or if the expression holds.

41

Instruction type Description
POPPARAM Pops an argument value from the procedure stack to the symbol d which is a

procedure parameter.
RETURNVOID Returns from the current void procedure.
RETURN Returns from the current procedure with the value of arg1.
PUSHPARAM Pushes the value of symbol arg1 onto the procedure stack.
CALL Calls the function identified by the symbol arg1 using arguments pushed onto

the procedure stack and stores the result in the symbol d.
RETCLEAN This instruction always follows CALL instructions and is the target for

RETURN and RETURNVOID.

Table 3: SIR instructions for procedures.

SIR instructions for procedures are summed up in Table 3. For calling procedures, the arguments are
pushed to a procedure stack in order from right to left using the PUSHPARAM instruction, with arg1
as the symbol to push. The procedure itself is called using the CALL instruction, which takes the
symbol of the procedure as arg1 and an optional symbol d to store the return value of the procedure.
The CALL instruction passes execution to the first instruction of the procedure. The RETURN and
RETURNVOID instructions pass control to the RETCLEAN instruction, which follows each CALL
instruction. The RETCLEAN instruction by itself currently does nothing, but the analyzer makes
use of it when constructing the graph of basic blocks. The RETCLEAN instruction might later also
be used to clean up any leftovers from the stack after returning from the procedure, or to actually
assign the returned value to the symbol d of the previous CALL instruction. Inside the procedure,
the POPPARAM instruction is used to take procedure arguments from the stack and assign them to
local parameter variables.

For example, for a procedure named add, which we define as

public int add(public int a, public int b) { return a + b; }

and its call result = add(4, 2);, one of the possible corresponding translations to SIR instructions
is shown in Table 4:

POPPARAM a PUSHPARAM 2
POPPARAM b PUSHPARAM 4
t = a + b result = CALL add
RETURN t RETCLEAN

Table 4: Example of a procedure (left) and a procedure call (right) in SIR instructions. Symbol t is
a local temporary variable of type (public, int var).

In addition to the aforementioned SIR instructions, there are two other instruction as shown in Table
5. The COMMENT instruction does absolutely nothing – it is only meant to provide a means to add
comments or annotations to the intermediate representation. The END instruction denotes the end
of the program – if this instruction is reached by the interpreter, execution is stopped.

Instruction type Description
COMMENT Does nothing. arg1 is reference to a comment string.
END Stops execution of the program.

Table 5: Miscellaneous SIR instructions.

42

6 Analysis for SecreC

We are ultimately interested in how much and in what ways private data leaks from SecreC programs
via declassify statements. Therefore, an appropriate method to use would have to be a data-flow
analysis technique. For SecreC and many other programming languages, syntax-oriented approaches
are in most cases not very practicable for detecting data flow. Therefore, a more general representation
of programs and their execution paths is needed. The most suitable approach is to use control flow
graphs. Having developed an intermediate representation for SecreC programs (which we presented
in Chapter 5), we can use intermediate representations of SecreC programs to construct these control
flow graphs. All further analyses will be done using the control flow graph.

In the first part of this chapter we describe the basic blocks and control flow graphs used by the
SecreC Analyzer, the second part describes the implemented general data-flow analysis component of
the SecreC Analyzer. The third part of this chapter describes how this framework can be used for
detecting information leaks.

6.1 Basic blocks and the control flow graph

For our current and any other future analysis, intermediate code generated by the SecreC Analyzer
is partitioned into a graph representation of basic blocks. Basic blocks are sequences of consecutive
code instructions, into which control flow can only enter through the first instruction, and from which
control flow leaves only through the last instruction either by continuing with the next instruction
in code (belonging to another basic block) or branching to some arbitrary instruction. Basic blocks
are then used to form a control flow graph (CFG), whose edges indicate the direction and type of
control flow between the blocks. Some basic block A is called the predecessor of basic block B, if in
the CFG there exists an edge from block A to block B. Under the same conditions, block B is called
the successor of block A.

The SecreC Analyzer distinguishes between five different types of control flow graph edges. The edge
between two basic blocks A and B is a

• regular edge if either

1. the control flow from block A enters block B either by an unconditional jump instruction
(JUMP) at the end of block A, or

2. the last instruction of block A does not alter control flow and in the code the instructions
of block B directly follow the instructions of block A;

• true edge if the last instruction of block A is a conditional jump which passes the control flow
to block B if the conditional expression is found to hold;

• false edge if the last instruction of block A is a conditional jump which passes the control flow
to block B if the conditional expression is found not to hold;

• call edge if the last instruction of block A is a procedure call instruction (CALL) and the code
of the procedure it calls starts with the first instruction in block B;

• return edge if the last instruction of block A is a procedure return instruction (RETURN or
RETURNVOID) and the first instruction of block B is a RETCLEAN instruction which follows

43

a CALL instruction calling the procedure which contains the code in block A;

• call pass edge is an edge which links the block ending with a CALL instruction to the block
which holds the corresponding RETCLEAN instruction as its first instruction.

In the control flow graph generated by the SecreC Analyzer all basic blocks have a maximum of two
outgoing edges. For all control flow graphs generated by the analyzer, the only basic block with no
outgoing edges is the block which follows the call to the main procedure (see ProgramRun rule in
Section 4.6). The only occurrence of the END instruction in the whole program is at the end of
this block. Basic blocks ending with a conditional jump always have two outgoing edges – a true
edge and a false edge – one for each branch. If the last instruction of a basic block is a CALL
instruction, there are also two outgoing edges – a call edge pointing to the first block of the code
of the procedure being called; and a call pass edge pointing to the next block which starts with a
RETCLEAN instruction. Blocks ending with a RETURN instructions have outgoing edges to the
blocks starting with RETCLEAN which follow the CALL instruction to the procedure which this
RETURN instruction is part of. All other blocks have only one outgoing edge. An example fragment
of a SecreC control flow graph for the SecreC code fragment in Figure 2 can be seen in Figure 3 where
true and false edges are labeled with + and − signs respectively, and regular edges do not have labels.

1 public int a = 42;
2 public int b;
3 private int c;
4 while (b < x) {
5 b += y;

6 if (b > z)
7 c += b;

8 }

Figure 2: Example code fragment
from a SecreC program.

8 a = 42

9 b = 0

10 c = 0

11 if (b < x) GOTO 13
12 GOTO 19
13 b = b + y

14 if (b > z) GOTO 16
15 GOTO 11
16 t = classify(b)

17 c = c + t

18 GOTO 11
19 // Any code following

Figure 3: Sequence of SIR instructions (not optimized)
and the respective CFG corresponding to the code
fragment in Figure 2. On the left, dotted lines represent
basic block boundaries.

6.2 Data-flow analysis component in the SecreC Analyzer

The SecreC Analyzer provides a general framework for forward and backward data-flow analyses
similar to what is described in [?]. The data-flow analyzer component can be given a number of
analysis objects as arguments. Each of these objects represent either a forward or backward data-flow
analysis algorithm. The data-flow analyzer then runs these analyses on top of the control-flow graph
generated for SecreC programs.

While [?] describes two separate general iterative algorithms for running forward and backward
analyses, one at a time, we have found that these two can easily be merged into a single iterative
algorithm which would allow a greater number of forward and backward data-flow analyses to be run
more efficiently in a single loop. If any of the analyses converge in the loop, it is purged from the list
of working analyses and is not considered in next iterations of the loop. The algorithm stops if all

44

analyses converge. The outline for the algorithm used in the SecreC Analyzer is given in Appendix B
as pseudocode.

Because the algorithm can differentiate between different types of edges in the control-flow graph, it is
able to run path-sensitive analyses, meaning that different kind of flow information can be propagated
to different blocks. For example, we know that in case of an if-statement, if the control flow reaches
one of its branches, the conditional expression guard holds in one branch, but does not hold in the other
branch. The algorithm used in the SecreC Analyzer allows analyses to catch this kind of information
regardless of the direction of analysis.

In our analyzer, the basic blocks in the control flow graph is interconnected with the instructions in
the intermediate representation, and those instructions are in turn interconnected with the symbols in
the symbol table and the abstract syntax tree. Hence, complex analyses can be implemented on top
of the framework provided by the SecreC Analyzer. Because nodes in the abstract syntax tree also
provide the locations of language constructs as written in the source code, the analyses have means
to provide good feedback for programmers and integrated development environments.

45

7 Experimental results

The implementation of the SecreC Analyzer is currently a work-in-progress in the form of a C++
library. We have implemented the translation of most of the language described in Chapters 2, 3 and
4 to the intermediate representation presented in Chapter 5. As described in Chapter 6, the analyzer is
capable of generating the basic blocks and the control-flow graph for the intermediate representation.
It provides the means to run data-flow analyses using the general algorithm described in Appendix B.
We have also implemented a preliminary command-line front-end for the library for testing purposes.

At library level, we have started to implement three different forward data-flow analyses. The first
is a reaching definitions analysis. We call the second data-flow analysis a reaching jumps analysis.
The third analysis is solely focused on information leakage. The implementations are still a work-in-
progress and would greatly benefit from constant propagation and region-based constant propagation
analysis, which we have not implemented yet.

7.1 Reaching definitions analysis

A reaching definitions analysis discovers for each program location the set of variable definitions which
reach that program location. A variable definition d of variable v is a statement or expression which
modifies the initializes or changes the value of v. The definition d of variable v is said to reach the
program location l if there exists an execution path from d to l so that there are no other definitions
of v on that path.

The reaching definitions analysis we have implemented is a rather simple one. Since SecreC does not
yet have pass-by-reference semantics for procedures, the reaching definitions analysis only needs to
consider global variables for inter-procedural analysis.

The reaching definitions analysis we implemented does not handle the case of variables going out of
scope, therefore the results it yields might in some cases be useless for us. For these cases, it might
be practical to hide the definitions of variables for blocks for which these variables are not in scope.
This can be done by extending the intermediate representation with explicit notation corresponding
to out of scope semantics. Also, a live-variable analysis can be used to hide definitions for variables
which are not later used.

Reaching definitions analysis can be used in optimizing compilers. For example, it can be used in a
technique called loop-invariant code motion, which is used to move loop-invariant expressions outside
of the loop if all the reaching definitions for all operands in that expression are outside of that loop.

7.2 Reaching jumps analysis

The reaching jumps analysis was originally meant in simple cases to discover which conditional
expressions acting as guards in if-statements and loop headers affect reaching definitions. The current
implementation is a simple demonstration of a path-sensitive data-flow analysis. For each basic block
B and each conditional jump instruction C that is on some execution path P from the entry node to
block B, the reaching jumps analysis calculates which of the branches of the conditional jump C are
last taken to reach block B. On each such execution path P only the last occurrence of C is taken into

46

account by the analysis. Potential applications for this analysis can exploit such information when
trying to infer conditions which hold at block B.

For example, let us look at the following code fragment:

if (c) {

// Block 1 is here

} else {

// Block 2 is here

}

// Block 3 is here

Our reaching jumps analysis can deduce that block 1 can only be reached if the condition c evaluates
to true and block 2 can only be reached if c evaluates to false. However, block 3 is reached from both
branches. For most cases, this tells us, that at the beginning of block 1 the condition c holds and that
c does not hold at the beginning of block 2. In case the conditional expression has side-effects, e.g.
(x += 1) > 2, then we still know that by reaching one of the branches the expression must evaluated
to a certain value.

By itself, this information is not of much use. However, similar path-sensitive analyses can be
used for optimizations and for detecting certain programming errors. For example, they can
be used to warn the programmer in case the program contains unreachable code in cases like
if (c) { if (!c) doSomething(); }. Our reaching jumps analysis can be extended to detect some
of such errors.

7.3 Detecting information leakage

We have also started work on a data-flow analysis to detect trivial cases of information leakage. This
analysis currently considers private procedure parameters and private values returned by procedure
calls to be unprocessed sensitive input data. The results of binary operations are considered non-
sensitive data. The results of unary operations and regular assignments are considered to be non-
sensitive if the operand is a constant. Otherwise sensitivity is transferred from the operand. The
analysis detects whether such sensitive data might be declassified.

More specifically, for each declassify instruction two sets of directly or indirectly (via unary
operators) reaching definitions are calculated. The first set contains non-sensitive definitions (by
unary operations on constants and by binary operations) and the other contains sensitive definitions
(return values from procedure calls and private procedure parameters). If only the set of non-sensitive
reaching definitions for some program declassify instruction is empty, sensitive data (defined by
some sensitive definition from the second set) is declassified. If only the second set is empty, no
sensitive information is considered to leak. If both sets are non-empty, sensitive data will only leaks
if corresponding execution paths are taken.

This kind of analysis suffers from a number of deficiencies which still need to be eliminated.
Most importantly, this analysis is not conservative because binary operations should not always be
considered to render sensitive data non-sensitive. Trivial examples for this include binary operations
where one operand is a known constant. Among other features, a constant propagation analysis is
needed to make this analysis more precise for binary operations.

47

Another deficiency of the current approach is that not all procedures that return private values must
be considered to return sensitive input data – only certain predefined procedures must be considered
to return sensitive data. For other procedure calls inter-procedural analysis is needed.

48

8 Conclusion

In this thesis, we present a framework for performing data-flow analyses on SecreC programs. To serve
as its theoretical basis, we have developed the first formal specification of the SecreC programming
language. Although not yet covering the entire language supported by the present compiler, it provides
a sufficient starting point for any further language development. The specification includes the formal
grammar of the language, static checking rules, and rules for operational semantics. The static
checking rules also provide a simple type system and detection of other programming errors.

We have built a C++ library containing the SecreC Analyzer which provides the means to run data-
flow analyses on SecreC programs. While the implementation is still in a development phase, it is the
first to use the new SecreC specification we have just provided. The library can be used as a front-end
to optimizing compilers and in integrated development environments to provide visual feedback to the
programmer. A sample command-line analyzer which uses the library as a back-end has also been
implemented.

Three forward data-flow analyses have been implemented as part of the library providing SecreC
Analyzer. The first of these is a reaching definitions analysis for SecreC. The second analysis provides
information about which branches of conditional jumps the execution flow must follow to reach parts
of the code. The third analysis is capable of detecting whether certain kinds of data flows that are
deemed to contain sensitive information unsuitable for publication, reach the declassify operators.
This information leakage analysis is capable of detecting information leakages for some simple cases.

We have built a sustainable foundation for further development of the SecreC language and related
tools. The language specification and SecreC Analyzer have provided a good starting point for further
research and development of the language and of information leakage analyses for SecreC. Full-blown
analyses for detecting information leakage and measuring the extent of information leakage are already
being researched. In parallel, plans are being made for implementing supportive analyses like constant
propagation analysis, and extending the formal specification of SecreC with support for arrays and
matrices.

Authors remark after successfully defending this thesis: Mainly due to the lack of time to work on this thesis the author

is personally dissatisfied with its submitted version, which in his opinion is not worth a higher grade than D (61-70%).

49

9 Analüüsiraamistik privaatsust säilitavale programmeerimis-

keelele SecreC

Jaak Ristioja

Magistritöö (30 EAP)

Kokkuvõte

Käesolevas magistritöös kirjeldame raamistikku privaatsust säilitava imperatiivse programmeerimiskeele, SecreC, prog-

rammide analüüsiks. Programmeerimiskeelt SecreC kasutatakse kõrge-tasemelise programmeerimiskeelena rakenduste

loomiseks Sharemind raamistikule. Programmeerimiskeelena eristab SecreC avalikke andmeid salajastest andmetest

ning garanteerib, et operatsioonid, mis tehakse salajaste andmete peal ei leki informatsiooni avalikesse väljunditesse.

Ometi on programmeerijal kasutada eksplitsiitne keelekonstruktsioon salajaste andmete avaldamiseks, mistõttu kontroll

infolekete üle jääb programmeerija vastutuseks. Lihtsustamaks programmeerija ülesannet verifitseerida infovooge nende

turvalisuse aspektist, otsustasime luua raamistiku, mis võimaldaks sooritada andmevoo-analüüse SecreC programmide

peal.

Loodud raamistiku suurima osa moodustab SecreC programmeerimiskeele esimene formaalne spetsifikatsioon, mis

koosneb SecreC kontekstivabast grammatikast, reeglistikust SecreC programmide staatiliseks kontrolliks ning keele

olekuteisendussüsteemina kirjeldatud operatsioonsemantikast. Enne käesoleva töö kirjutamist kirjeldas SecreC prog-

rammeerimiskeelt ainult vastav kompilaator, mille keelekäsitluses eksisteeris mitu olulist puudust. Loodud formaalne

spetsifikatsioon on mõeldud teoreetiliseks aluseks nii keele tööriistadele kui ka keelde lisatavatele laiendustele, millest

tähtsamaiks on massiivide ja maatriksite tugi.

Kasutades alusena loodud spetsifikatsiooni, oleme implementeerinud analüsaatori SecreC programmide analüüsiks.

Realiseerisime analüsaator programmeerimiskeele C++ teegina üheskoos lihtsa käsurea-põhise testrakendusega, mis

jooksutab etteantud SecreC programmitekstil implementeeritud andmevoo-analüüse. Analüsaatori poolt kasutatav

algoritm on võimeline jooksutama mõlema-suunalisi rajatundlikke andmevoo-analüüse, mida on võimalik algoritmile

edastada argumendina. Loodud analüsaatorit võib kasutada nii optimeerivates kompilaatorites kui ka arenduskeskkon-

dades, mis pakuvad programmeerijale visuaalset tagasisidet.

Implementeerisime analüsaatoris ka kolm lihtsat andmevoo-analüüsi. Esiteks realiseerisime nn reaching definitions

analüüsi, mis tuvastab muutujatele omistavate avaldiste mõjupiirkonna. Teine loodud analüüs demonstreerib analüsaatori

rajatundlikust, tuvastades tingimuslike hargnemiste harud, mille kaudu on võimalik jõuda mõnda programmi punkti.

Kolmas analüüs tuvastab üldistatud kujul infolekkeid, määrates protseduuri privaatsed argumendid ning privaatsed ta-

gastusväärtused delikaatseteks andmeteks ning kontrollides, et vastavaid delikaatseid andmeid ei avaldataks declassify

operaatori abil. Sealjuures ei kaota info oma delikaatsust tavalise omistamise või unaarsete operatsioonide kaudu.

Olenevalt hargnemistest koodis oskab see analüüs tuvastada, kas delikaatset info lekitatakse igal juhul või ainult mõne

valitud täitmisraja puhul.

SecreC formaalne spetsifikatsioon ja analüsaator on asendamatuks vundamendiks keele ja selle tööriistade edasiseks

arenduseks. Saavutatu tulemusena alustasime ka võimaluste uurimist täiemahulise infolekete tuvastamise ja mõõtmise

analüüsi realiseerimiseks, oleme vastu võtnud olulisi otsuseid SecreC tuleviku suhtes ning alustanud ka meie eesmärke

toetavate analüüside implementeerimist.

Autor tänab oma juhendajat Dan Bogdanovit tema rohke pühendumise, kasulike nõuannete ja teema püstituse eest,

mis võimaldasid käesoleva magistritöö valmimise; ning kõiki teisi, kes hea nõu ja toega suureks abiks olid, eriti Liina

Kammi.

50

Appendix A. Typing for Binary Operations

The typing rules for binary operators for SecreC are given in the table below. A binary operation is only typeable if

there is a row in the table corresponding to the binary operator and the types of its operands. Otherwise, the binary

operation is considered to be not typeable.

Binary operators Type of first 1st operand Type of first 2nd operand Type of result

Logical OR: ||

Logical AND: &&
bool bool bool

Equality: ==

Inequality: !=

Less-than: <
Less-or-equal: <=

Greater-or-equal: >=

Greater-than: <=

bool bool bool

int int bool

int unsigned int bool

unsigned int int bool

unsigned int unsigned int bool

string string bool

String concatenation: + string string string

Addition: +
Subtraction: -

Multiplication: *

Division: /
Modulo: %

int int int

unsigned int unsigned int unsigned int

51

Appendix B. Algorithm for data-flow analyses in SecreC Ana-

lyzer

The followign is a simplified outline of the generic iterative algorithm used for data-flow analysis purposes in the SecreC

Analyzer.

INPUT:

• Control flow graph CFG where (P, T, S) ∈ CFG is an edge of type T from block P to block S.

• A set of data-flow analysis objects AS = BAS ∪ FAS where

– FAS is the set of forward data-flow analysis objects,

– BAS is the set of backward data-flow analysis objects and

– each analysis object A ∈ AS represents some data-flow analysis and has

1. a direction D ∈ {backward, forward} for the analysis,

2. a set V of data-flow values,

3. for each basic block B ∈ CFG values INA[B], OUTA[B] ∈ V which contain the data-flow values for

the beginning and end of that block respectively,

4. an initialization method INITA which takes the CFG as an argument and initializes the state of the

analysis object, including the INA and OUTA sets,

5. a data-flow transfer function fA,

6. a data-flow meet operator
VA which for path-sensitivity takes operands of type V × T where the

second component is the type of the edge which connects the corresponding blocks,

7. a method CLEANUPA which executes any clean-up code after completing the analysis.

ALGORITHM:

1. BAS+ = ∅
2. FAS+ = ∅

3. for each analysis FA in FAS

4. run INITFA(CFG)

5. put FA into FAS+

6. for each analysis BA in BAS

7. run INITBA(CFG)

8. put BA into BAS+

9. while FAS+ ∪BAS+ 6= ∅:
10. for each basic block B in CFG:

11. if B is not the exit block and BAS+ 6= ∅:
12. for each analysis BA in BAS+

13. OUTFA[B] =
VFA

(B,T,S)∈CFG (INFA[S], T)

14. INFA[B] = fFA (B,OUTFA[B])

15. if B is not the entry block and FAS+ 6= ∅:
16. for each analysis FA in FAS+

17. INFA[B] =
VFA

(P,T,B)∈CFG (OUTFA[P], T)

18. OUTFA[B] = fFA (B, INFA[B])

19. for each analysis FA in FAS+

20. if any OUTFA wasn’t changed

21. remove FA from FAS+

22. for each analysis BA in BAS+

23. if any INBA wasn’t changed

24. remove BA from BAS+

25. for each analysis A in AS

52

26. run CLEANUPA()

53

Appendix C. Source code for SecreC Analyzer library

The source code of the SecreC Analyzer is included on a CD. The code is still a work-in-progress and has only been

tested on a 64-bit Gentoo Linux distribution running on a processor with x86-64 architecture. Instructions to compile

the library are included in the README file. To run the command-line test tool on SecreC programs, the runsca.sh Bash

shell script can be used. The script expects the file name of a SecreC program as a command-line argument.

54

	Introduction
	Outline of this thesis
	Author's contribution

	Grammar
	Character set and whitespace
	Program
	Variable definitions
	Types
	Procedures
	Statements
	Expressions

	Static checking
	Type system
	Regular types
	Statement types
	Program types

	Typing rules
	Identifiers and procedure overloading
	Type environment
	Checking expressions
	Checking statements
	Checking programs

	Natural semantics
	Locations, stores and environments
	Evaluation of expressions
	Declassification and classification
	Variables and constants
	Simple expressions
	Logical expressions
	Ternary operation
	Assignment expressions
	Procedure calls

	Evaluation of variable definitions
	Evaluation of statements
	Compound statements
	Statement blocks
	Local variable definitions
	Return statements
	Break and continue statements
	Expression statements
	if-statements
	while-loops
	do-while-loops
	for-loops

	Evaluation of procedure definitions
	Evaluation of the program

	Intermediate representation
	Symbol table
	Instruction set

	Analysis for SecreC
	Basic blocks and the control flow graph
	Data-flow analysis component in the SecreC Analyzer

	Experimental results
	Reaching definitions analysis
	Reaching jumps analysis
	Detecting information leakage

	Conclusion
	Analüüsiraamistik privaatsust säilitavale programmeerimiskeelele SecreC
	Appendices:
	Typing for Binary Operations
	Algorithm for data-flow analyses in SecreC Analyzer
	Source code for SecreC Analyzer library

