
UNIVERSITY OF TARTU

FACULTY OF SCIENCE AND TECHNOLOGY

Institute of Computer Science
Computer Science Curriculum

Ville Sokk

An improved type system for a privacy-aware
programming language and its practical

applications

Master’s Thesis (30 ECTS)

Supervisors: Dan Bogdanov, Phd

Jaak Randmets, MSc

Tartu 2016

An improved type system for a privacy-aware programming lan-
guage and its practical applications

Abstract:
Confidential data needs to be processed in many areas, for example when making policy
decisions using goverment databases or when providing cloud-based services. Share-
mind is a framework for developing privacy-preserving applications which allows data to
be analysed without revealing individual values. Sharemind uses a technology called
secure multi-party computation. Programs using the Sharemind framework are writ-
ten in a programming language called SecreC. Sharemind and SecreC are designed
to support multiple secure multi-party computation methods which we call protection
domain kinds. Different protection domain kinds have different security guarantees and
performance characteristics and the decision about which one to use depends on the prob-
lem at hand which means SecreC should support different protection domain kinds that
solve the needs of different applications. The goal of this thesis is to make it easier to add
protection domain kinds to the SecreC language by allowing the programmer to define
the protection domain kind data types, arithmetic operations and type conversions in the
SecreC language without changing the compiler. The author developed a formal type
system for the proposed language extensions, implemented them in the SecreC language
compiler, described practical applications, open problems and proposed solutions.

Keywords: secure multi-party computation, domain specific languages, type systems,
compiler construction

Täiustatud tüübisüsteem privaatsusteadlikule programmeerimis-
keelele ja selle praktilised rakendused

Lühikokkuvõte:
Privaatseid andmeid on tarvis analüüsida või töödelda mitmes valdkonnas, näiteks tehes
poliitilisi otsusi kasutades riiklikke andmekogusid või pakkudes pilvepõhiseid teenuseid.
Sharemind on raamistik turvalisust säilitavate rakenduste arendamiseks, mis võimaldab
andmeid analüüsida ilma üksikuid väärtuseid avaldamata. Sharemind kasutab selleks
turvalise ühisarvutuse tehnoloogiat. Sharemindi raamistikku kasutavad programmid on
kirjutatud programmeerimiskeeles nimega SecreC. Sharemind ja SecreC toetavad
erinevaid turvalise ühisarvutuse meetodeid, mida nimetame turvaaladeks. Erinevatel tur-
vaaladel on erinevad turvagarantiid ja efektiivsus ning turvaala valik sõltub konkreetse
rakenduse vajadustest, mistõttu peaks SecreC toetama erinevate turvaalade kasutamist
vastavalt rakenduse nõuetele. Töö eesmärk on võimaldada SecreC keelele turvaalade
lisamist lubades programmeerijal kirjeldada turvaala andmetüübid, aritmeetilised tehted
ja tüübiteisendused SecreC keeles. Töö autor lõi keele täiendustele formaalselt kirjel-
datud tüübisüsteemi, teostas muudatused SecreC kompilaatoris, kirjeldas muudatuste
praktilisi rakendusi, tekkivaid uusi probleeme ja nende võimalikke lahendusi.

Võtmesõnad: turvaline ühisarvutus, valdkonnaspetsiifiline keel, tüübisüsteemid, kom-
pilaatorite ehitus

2

Contents

1 Introduction 4
1.1 Problem statement . 4
1.2 Outline . 4
1.3 Author’s contribution . 5

2 Preliminaries 6
2.1 Secure computation . 6
2.2 The SecreC programming language . 8
2.3 Problem statement . 10
2.4 Related work . 12

2.4.1 SMCL . 12
2.4.2 Fairplay and FairplayMP . 13
2.4.3 TASTYL . 13
2.4.4 L1 . 14
2.4.5 DSL of Launchbury et al. 14
2.4.6 DSL of Mitchell et al. 15
2.4.7 PICCO . 15
2.4.8 Wysteria . 16
2.4.9 ObliVM-lang . 17

3 Syntax 18
3.1 Kind definitions . 20
3.2 Operator definitions . 21
3.3 Cast definitions . 22

4 Type system 24
4.1 Value types . 24
4.2 Inference rules and coinduction . 25
4.3 Typing rules . 26
4.4 Kind definitions and domain declarations 31
4.5 Operator definitions and arithmetic expressions 31
4.6 Cast definitions and cast expressions . 36
4.7 Unification and ordering of definitions . 38

5 Implementation 41
5.1 Architecture and overview of changes . 41
5.2 Finding and instantiating matching definitions 42
5.3 Types of integer and floating point literals 42
5.4 Implementation details . 43

6 Practical applications 45
6.1 Practical implications for users of SecreC 45
6.2 Proposed structure for the SecreC standard library 46

7 Future work 47

8 Conclusion 50

3

1 Introduction

1.1 Problem statement

Confidential data needs to be analysed or processed in many areas. Businesses collect and
analyse data from their customers. Data from government institutions can be analysed
to make decisions regarding health care, employment and education strategies. Cloud
computing services necessarily learn private information about their customers to provide
the service. Researchers use patients’ data to evaluate and develop medical treatments
or learn about the causes of diseases. However, people have a valid concern about what
personal information is collected from them and how it is used. We would like to support
all these use cases without compromising the privacy of the individual.

The goal of secure multi-party computation (SMC) is to securely evaluate a func-
tion on private inputs without revealing the inputs. Multiple cryptographic methods for
SMC exist. Sharemind is a platform that implements SMC for programming privacy-
preserving applications [Bog13]. A deployment of a Sharemind application uses dis-
tributed computers to compute on private values. The distributed programs are imple-
mented in a programming language called SecreC [Jag10, Ris10]. Since different SMC
methods have different privacy guarantees and efficiency, Sharemind and SecreC are
designed to support multiple SMC methods [BLR14].

The current implementation of SecreC allows the programmer to use different SMC
methods but the compiler assumes that every SMC method has private versions of the
built-in data types of SecreC (such as integers, booleans and floating point numbers) and
supports all arithmetic and logic operations. An implementation of some SMC method
may not support all the types and operations. If an unsupported operation is used on
some private value, an error will occur when the program is executed on the Sharemind
platform. These errors should be excluded statically. Some SMC methods may use non-
standard data types, such as big integers which do not have a matching built-in data type.
Shamir’s secret sharing uses a field with a prime module so private values may require
an uncommon bit length (other than 8, 16, 32, 64) for their memory representation
[Sha79]. Programmers should be able to extend the set of private data types beyond
those built into the language. The goal of this thesis is to extend the SecreC language
and compiler implementation so that support for different SMC methods and different
private data types can be added dynamically by programming a module in the SecreC
language as opposed to changing the compiler. This will reduce mistakes when writing
SecreC programs and makes the life of a SecreC programmer easier.

1.2 Outline

This thesis is structured into the following chapters:

• Chapter 2 describes the background of the problem. The chapter defines the terms
used in the thesis, describes secure multi-party computation and the SecreC pro-
gramming language, explains the problem in detail and gives an overview of other
programming languages designed for programming privacy-preserving applications.

• Chapter 3 describes the syntax of a subset of the SecreC programming language.
This includes a few syntactic constructs added in this thesis and also existing fea-
tures of the language for completeness.

4

• Chapter 4 gives formal static semantics to the subset of SecreC that was defined
syntactically in chapter 3. The type-level distinction of private and public values is
described. We give rules for valid operator definitions and arithmetic expressions
as well as type conversion definitions and expressions.

• Chapter 5 describes the implementation of the language extensions proposed by the
author in the SecreC language compiler.

• Chapter 6 describes how the changes can affect programming of practical applica-
tions in the SecreC language.

• Chapter 7 explains some open issues with both the language design and implemen-
tation and proposes solutions.

1.3 Author’s contribution

In this section we list the author’s original contributions to this thesis. The author
designed the language extensions described in this thesis, defined the static semantics of
the extensions based on the work of Peeter Laud, Jaak Randmets and Dan Bogdanov
[BLR14] and implemented the extensions in the SecreC compiler. The main challenges
of this thesis were designing a way to define operations on private values for any secure
computing mechanism while requiring minimal effort from the programmer, supporting
optimised definitions for special cases, supporting non-standard data types of private
values and making the use of PDKs convenient for SecreC programmers by supporting
arithmetic expressions with different combinations of input types, such as scalar and
vector multiplication.

5

2 Preliminaries

2.1 Secure computation

Secure multi-party computation (SMC) is a model of computation where n parties com-
pute a function

(y1, y2, . . . , yn) = f(x1, x2, . . . , xn)

where the i-th party provides input xi and learns output yi [Yao82]. The parties learn
their own output but not each other’s inputs or outputs. SMC protocols are designed so
that they do not leak anything about the inputs besides what can be deduced from the
result. Multiple mature cryptographic methods exist for implementing SMC [ABPP15].

One well-known method of SMC is Yao’s garbled circuits [Yao82]. Yao’s garbled
circuits allow two parties P1 and P2 to compute any function on shared inputs. First,
the function f(·, ·) is represented as a boolean circuit. Party P1 encrypts (“garbles”)
the circuit of f . For each bit x of each input, two random values x0 and x1 are gen-
erated for the two possible values (0 or 1). To garble an OR gate with inputs x,
y and output z, a random value corresponding to the output bit is encrypted using
the random values corresponding to the inputs as the key. The encrypted outputs are
Ex0,y0(z0), Ex0,y1(z1), Ex1,y0(z1), Ex1,y1(z1). z0 or z1 can only be decrypted with valid in-
puts. The garbled circuit is sent to P2 who uses a method called oblivious transfer to
learn the random values corresponding to its inputs from P1. Oblivious transfer does not
reveal the value of P2 to P1. P2 now decrypts the random output keys of gates using
the learned input keys. After evaluating the circuit, P2 learns the random values of the
output bits. If the different possible output values and the result computed by P2 are
published, the output is revealed by comparing P2’s result to the possible outputs. This
method has also been extended to support more than two parties [BMR90, BDNP08].

Another method of SMC is arithmetic secret sharing. To secret share a private value
x in ring Zn, we generate random values x1, x2, . . . , xn−1 ∈ Zn and compute

xn = x− x1 − x2 − . . .− xn−1 (mod n).

The original value can be reconstructed as

x = x1 + x2 + . . .+ xn (mod n).

Each of the values xi, i = 1 . . . n (called shares) are then sent to a different computing
party. Since the shares are random, none of the parties knows the original value x. By
using network communication and local computations, the parties can compute secret
shared results from the shares of the input values. For example, to add two secret shared
values x and y, each party adds their shares of the two values:

(x1 + y1) + (x2 + y2) + (x3 + y3) = (x1 + x2 + x3) + (y1 + y2 + y3) = x+ y

Each party now holds a share of the sum. If the parties decide that a result should
be made public, they can reveal the shares and add them modulo N . A benefit of secret
sharing is that the parties who provide the input shares and who receive the output shares
can be independent of the parties computing the function. Extensions of Yao’s garbled
circuits to multiple parties also have this property.

Different SMC methods have different advantages and disadvantages. They have
different performance characteristics, security guarantees and they require a different

6

number of computing parties. For example, most protocols based on Yao’s garbled circuits
and arithmetic secret sharing are secure if the computing parties observe the data but
do not deviate from the protocol. Some SMC methods provide active security against
computing parties who try to learn inputs by not following the protocol [GMW87]. In a
practical application, the choice of SMC method depends on a balance of efficiency and
security and how many independent parties can participate in the computation. More
efficient methods can be used for data that has lower security requirements.

Sharemind is a distributed platform for developing secure computation applications
[Bog13]. It provides implementations of SMC methods and developer tools for program-
ming privacy preserving applications. The most mature SMC method in Sharemind
is three-party arithmetic secret sharing. The deployment of a Sharemind application
using the three-party additive secret sharing method is illustrated in Figure 1. Multiple
parties can provide inputs by secret sharing them and sending the shares to the three
servers. The servers can reveal outputs to multiple output parties by sending shares of
the output to the output party who combines them to learn the result.

Figure 1: Deployment of a Sharemind application

Secure computation has been used in practical applications. Sharemind was used
in a pilot project to analyse whether working while studying in a university affects grad-
uation rates [BKK+16]. A statistical analysis package called Rmind was used which is
implemented on the Sharemind platform [BKLS14]. About half of the code of Rmind is
written in SecreC. The other half is a client application that runs on the statistician’s
computer and communicates with the SecreC program. Data from the Estonian Min-
istry of Education and Research and the Tax and Customs Board was secret shared and
uploaded to a deployment of Sharemind servers. A statistician analysed the data using
Rmind which guaranteed that the statistician could not see individual values in the data.
To ensure privacy the servers were hosted by three independent parties (Cybernetica AS,
the IT department of the Ministry of Finance and the Estonian Information System Au-
thority). This study illustrates how secure computation, Sharemind and SecreC can
be used to analyse confidential data without compromising privacy. A study on the full
data using conventional methods would not have been possible due to data protection
laws.

7

2.2 The SecreC programming language

To implement a privacy-preserving program using Sharemind, a developer must program
two main components. A program that runs on each of the Sharemind servers is written
in the SecreC programming language [Jag10, Ris10, BLR14]. The second component
is a client application which starts the SecreC program, sends inputs to it and receives
results.

SecreC is a procedural statically typed programming language similar to the C
and C++ programming languages. Features have been added that make it more suited
for writing secure computation programs. A SecreC program is compiled to bytecode
which is interpreted by a virtual machine included in the Sharemind server. Two major
versions of the language have existed: SecreC 1 [Jag10, Ris10] which supported only a
single protection domain and SecreC 2 which has polymorphic procedures and supports
multiple protection domains [BLR14].

For security, SecreC relies on an arithmetic black box [DN03]. An arithmetic black
box provides protocols for creating and revealing private values and performing secure
arithmetic with private values. These protocols are external to the language and SecreC
is only used to implement privacy preserving algorithms and business logic using the
arithmetic black box as a building block. In the Sharemind framework, protocols can
be implemented using a separate domain specific language [LR15].

Since different SMC methods exist, none of which is clearly superior, both Sharemind
and SecreC are designed to support multiple SMC methods. We call an implementation
of an SMC method a protection domain kind. A protection domain kind (PDK) consists
of supported data types, methods for creating (classifying) and revealing (declassifying)
private values, arithmetic, relational and logical operations. A protection domain (PD)
is an actual instance of a protection domain kind. An example of a PDK would be one
using additive secret sharing. It would support classifying values by secret sharing them,
declassifying values and protocols for performing arithmetic on secret-shared values. Al-
ice, Bob and Carol can create a protection domain of the additive secret sharing PDK by
hosting three Sharemind servers.

A PDK is implemented as a module that is dynamically linked by the Sharemind
server. Modules are programmed using a C interface. The Sharemind platform provides
a network layer that can be used by the module implementer. The PDK exposes a
number of system calls which are procedures with a special interface that can be invoked
from SecreC code. For example, to provide private integers, the module should expose
system calls for allocating and deleting integer vectors, classifying, declassifying, assigning
values, performing arithmetic, comparing values etc. A bytecode program interpreted by
the virtual machine can then use these system calls to compute with private integers. The
programmer can declare a PDK as follows (shared3p is used in the SecreC standard
library as the name of the three party additive secret sharing PDK):

kind shared3p;

A protection domain can be instantiated as follows:

domain pd_shared3p shared3p;

In SecreC, the type of each primitive value consists of three components: protection
domain, data type and dimensionality. Let us look at an example of a variable declaration:

pd_shared3p uint [[1]] x;

8

Here, pd shared3p is the name of the protection domain. For public values there is a
protection domain public which can be omitted. The [[1]] component after the data
type is the dimensionality. In this case a one-dimensional vector is declared. Scalars are
zero-dimensional arrays. Dimensionality can be omitted when declaring a scalar.

The syntax for operating with private values is the same as for operating with public
values. For example, if x and y are private values, x * y is their product and the
compiler uses the correct protocol according to the kind of the protection domain of
the two variables. In SecreC, arrays with any dimensionality can be operands to an
operator. The operator will be applied point-wise, i.e. an expression multiplying two
arrays will multiply elements with the same index. A run-time error is reported if the
arrays have a different shape.

SecreC uses information flow control to track the security class of a value [Mye99].
Protection domains are used as labels indicating the privacy level of the value. These
labels form a join-semilattice which is a partially ordered set with an operator called
least upper bound. The ordering relation d1 v d2 states that values from protection
domain d1 can flow into domain d2. The least upper bound d1 t d2 is the domain where
values from both d1 and d2 can flow. The type system uses information flow control to
track protection domains of values and to statically ensure that private values are not
leaked. For example, a private value can not be returned by a procedure with a public
return type. It has been shown that if the PDK operations are secure and composable
(using multiple operations in a sequence does not reduce security), a program written
in SecreC does not leak private values except values which are explicitly declassified
[BLR14].

SecreC supports parametric polymorphism using templates similar to the C++ pro-
gramming language. Templates support domain, data type and dimension quantifiers. If
a programmer implements an algorithm that relies on operations that are supported in
shared3p they can write a templated procedure that supports all protection domains of
kind shared3p and all data types. For example:

template <domain D : shared3p , type T>

D T[[1]] sort(D T[[1]] vector) {

// Implementation here

}

If a templated procedure is called it is instantiated with the concrete types, domains
and dimensions used in the call. The domain kind constraint can be omitted (i.e. just
domain D can be used) if the procedure relies solely on operations that are expected to
be implemented in each PDK. SecreC also supports overloading which means a generic
procedure can be written that works in different PDKs and a kind-specific optimised
version which will be used when the domain used in the call is from that kind. For
example, we could implement a PDK-generic sorting procedure and the signature would
be the same as the given example except there would be no shared3p constraint. These
two procedures would both be in scope and when sorting a shared3p value, the compiler
would choose the procedure with the kind constraint.

The following listing is an example of SecreC code which implements the logistic
function and calculates the mean of a private vector:

import stdlib;

import shared3p;

9

domain pd_shared3p shared3p;

template <domain D : shared3p >

D float64 [[1]] logistic(D float64 [[1]] x) {

D float64 [[1]] exp(size(x));

__syscall (" shared3p :: exp_float64_vec",

__domainid(D), -x, exp);

return 1 / (1 + exp);

}

template <domain D>

D float64 mean(D int64 [[1]] x) {

D int64 sum = 0;

for (uint i = 0; i < size(x); ++i) {

sum += x[i];

}

return (float64) sum / (float64) size(x);

}

void main() {

pd_shared3p int64 [[1]] x = argument ("input ");

publish (" result", mean(x));

}

A vector of private inputs is received from the client application which has executed
the SecreC program. The mean of the input vector is calculated using the domain
polymorphic procedure mean. The result is published to the client application. There is
also an example of the logistic function to illustrate the system call feature of SecreC.
The shared3p PDK protocol for computing the exponential function is used with the
syscall syntax to implement logistic. This protocol is implemented externally in the

module that contains shared3p protocols. System calls are usually wrapped in SecreC
procedures and are not called directly.

2.3 Problem statement

A protection domain kind in SecreC is currently declared as follows:

kind kind_name;

A protection domain kind consists of:

• data types supported in the PDK;

• implementations of classification and declassification; and

• implementations of arithmetic, relational and type conversion operators.

The first issue is that the SecreC kind declaration mentioned none of these. Cur-
rently the SecreC compiler assumes that all of the primitive types built into the lan-
guage and all of the operators are supported in each PDK. If, for example, there is
a domain pd shared3p of kind shared3p and the program contains a multiplication

10

of two pd shared3p uint32[[1]] vectors, the compiler will use a system call named
shared3p::mul uint32 vec. This is a problem because it is possible that the PDK
module does not contain this system call. The program will compile without errors and
an error occurs when the virtual machine in the Sharemind server starts interpreting the
program. This should be a compile time error to make programming in SecreC easier.

The second issue is that the set of data types is fixed. Although secret sharing
signed and unsigned integers is straightforward, it is not clear what is the best way to
approximate real numbers. The additive secret sharing PDK in Sharemind supports
floating-point numbers similar to the ones used in modern computers [KW14a]. Because
operations on this representation of floating-point numbers are expensive compared to
integers, other representations have been considered, like fixed-point numbers [KW14b].
Although fixed-point numbers are more efficient, they have a smaller range and are less
accurate near zero. It should be possible to define multiple alternative private data types
so that the programmer can choose one according to the balance of accuracy and efficiency
most suited to the problem at hand.

The third issue is that the representation of the data types in the PDK module is
opaque to the SecreC compiler. For example, the compiler does not know how to
allocate a private vector because the size of a value is unknown. Allocations are compiled
as allocation system calls. In addition to classification, declassification and operators,
the implementer of the PDK module must provide system calls for allocating, deleting,
initialising, indexing and assigning to vectors. This is a problem because the system
calls have a significant overhead. For example, values of a private vector are sometimes
rearranged as in the following code:

pd_sharedp3 uint [[1]] arrange(pd_shared3p uint [[1]] input ,

uint [[1]] permutation)

{

uint length = size(input);

pd_shared3p uint [[1]] result(length);

for (uint i = 0; i < length; i++) {

result[i] = input[permutation[i]];

}

return result;

}

Even though input and result are private, this requires no network communication
because there is no arithmetic on private values and should be consequently very fast.
But the compiled code performs O(n) system calls and due to the overhead of system
calls, it is significantly less efficient than the equivalent code on public values. It should
be possible to define the bit width of private types so that the compiler would be able to
generate indexing and assignment code without system calls.

The goal of this thesis is to extend the SecreC language and compiler to support:

• data type declarations in kind declarations;

• arithmetic, logic and relational operator definitions; and

• private data type conversion definitions.

For each implemented PDK module, there would be a SecreC library module defining
the kind, the data types in the kind and the supported operators and type conversions. A

11

programmer using SecreC would import the PDK’s SecreC library and the compiler
would give errors when unsupported types, operations or conversions are used.

Defining a new PDK should be convenient for the implementer of a PDK. SecreC
supports operators that have a private and public operand. Currently the public operand
is classified to the same domain as the private operand. This means there are up to three
versions of a binary operator (private ⊗ private, private ⊗ public, public ⊗ private).
Operations where one of the operands is a scalar and the other one has higher dimension
are also supported. This also means there are up to three versions of a binary operator
(N ⊗N , N ⊗ 1, 1⊗N). If there are n data types and m supported binary operators in
a PDK, there would be up to n ·m · 3 · 3 definitions. This would be too much boilerplate
and should be reduced as much as possible. At the same time, the implementer of a PDK
should be able to write efficient implementations of special cases.

2.4 Related work

In this section we review other programming languages designed for secure multi-party
computation. They are compared to SecreC 2 and their approach to the problems of
this thesis is discussed.

One of the distinguishing features of SecreC is its extensive standard library. It in-
cludes modules for matrix algebra, oblivious conditionals (on values, not blocks of state-
ments), an implementation of the AES (Advanced Encryption Standard) [Nat01] cipher
on secret-shared values, a database system for storing secret-shared values, a module for
generating random secret-shared values and shuffling secret-shared vectors, procedures for
sorting values, procedures for working with private ASCII strings and different statistical
methods such as hypothesis testing procedures and linear regression.

2.4.1 SMCL

SMCL (Secure Multi-party Computation Language) is a procedural programming lan-
guage designed for writing SMC applications [Nie09].

In SMCL both client and server-side code are written in the same language. The
server-side program is compiled to a Java program which uses the SMCR (Secure Multi-
party Computation Runtime) Java library. SecreC programs are compiled to bytecode
which is executed by the Sharemind servers so multiple server-side programs can be
installed without changing the server.

Currently, SecreC programs are provided inputs before the program is executed.
Running a SecreC program is equivalent to secure function evaluation. SMCL, on
the other hand, is a concurrent programming language where the client and server can
communicate while the program is running using channels (called tunnels) or remote
procedure calls.

The language is proven to be trace secure – executions of the same program on different
private inputs seem the same externally (until a private value is declassified). This is the
same guarantee provided by SecreC.

Unlike SecreC, SMCL also allows conditionals with private conditions. The type
system checks whether it is possible to securely evaluate a private conditional by tracking
whether the branches have side effects like assignment to public variables or I/O.

SMCL provides a statement open(e|x, y, z) which reveals the value of expression
e. The list of variables after the | symbol annotates which variables affect the value of e.

12

It is statically tracked that the programmer lists all variables. This system of annotations
makes it easier to determine which inputs may leak in the open statement. SecreC does
not provide such annotations.

SMCL differentiates private (e.g. sint) and public data types (e.g. int) but only a
single mechanism of SMC is supported so PDKs are not distinguished like in SecreC.
The concerns of this thesis do not exist in SMCL but it also does not have the benefits
of multiple PDKs.

2.4.2 Fairplay and FairplayMP

Fairplay is a secure multi-party computation system that uses garbled circuits [MNPS04].
It consists of two programs representing the roles of Alice and Bob in Yao’s garbled
circuits approach. FairplayMP extends the system to more than two computing par-
ties [BDNP08].

The programmer can decide the roles of different parties. Some parties provide inputs,
some participate in constructing and evaluating the circuit and some get an output.
Different outputs can be provided to different parties.

Compiled Fairplay programs evaluate a boolean circuit described in SHDL (Secure
Hardware Definition Language). Programs are written in a high-level procedural language
called SFDL (Secure Function Definition Language) which is translated to SHDL.

Like SecreC, a secure program takes inputs once and returns outputs, there is no
communication with a separate client while the program is running. SFDL programs
do not have public inputs. SFDL supports procedures, conditionals and for loops with
a constant number of iterations. Both branches of conditionals are evaluated and the
result is chosen obliviously based on the condition. Procedures are always inlined and
for loops are unrolled (the body is copied for each iteration). SecreC is more flexible
because it allows computations on private and public values. Declassifying aggregate
values when it is determined to be semantically safe (i.e. the aggregate value does not
leak information about individual inputs that were used to compute it) can be used to
write more efficient programs.

Since SFDL only targets boolean circuits, issues related to supporting multiple PDKs
are irrelevant.

2.4.3 TASTYL

TASTY is a tool for describing and executing SMC protocols [HKS+10]. It uses a two-
party scheme based on Yao’s garbled circuits and Paillier’s additively homomorphic en-
cryption [Pai99]. The authors show that homomorphic encryption is more efficient than
garbled circuits when multiplying integers while garbled circuits are more efficient for
comparisons so a system for using both is more efficient than either one alone. They
demonstrate this in [HKS+10, Figure 5] by computing the minimum of the point-wise
product of two vectors using combined garbled circuits and homomorphic encryption.
TASTY includes algorithms for converting values between the two schemes. The TASTY
framework can generate Yao circuits for arithmetic operations or read them from files
(including the SHDL format used by Fairplay).

A language called TASTYL is used to write programs using the TASTY tool. TASTYL
is implemented as a Python domain specific language (DSL). It supports arithmetic and
comparisons on private (both garbled and encrypted) and public values. The two parties
are given names (e.g. “client” and “server”) and variables must be explicitly declared

13

on either side. The programmer has to declare whether a value is garbled or encrypted
using homomorphic encryption.

TASTYL is not as high-level as SMCL, SFDL from Fairplay or SecreC because
the programmer has to think about the two computation parties instead of describing a
high-level algorithm. Unlike SFDL, it supports public values and unbounded iteration
on public values. Since TASTYL is designed specifically for the combination of garbled
circuits and homomorphic encryption, it does not support multiple PDKs and the issues
of this thesis are irrelevant.

2.4.4 L1

L1 is a procedural language for implementing SMC protocols [SKM11]. It supports
procedures, arithmetic, conditionals, loops, big integers, native integers and booleans.
Programs written in L1 are compiled into multiple Java programs which implement the
different parties of the SMC protocol. Multiple SMC techniques are supported, such as
secret sharing, homomorphic encryption and Yao’s garbled circuits. Different parties of
the computation are given numeric identifiers and the programmer can write sections of
code which are only executed by one party. The parties can send messages to each other
through TCP/IP channels. Special syntax allows for loops to be executed in parallel.

L1 enables implementation of efficient protocols by using both public and private com-
putations, by combining multiple SMC techniques and by using explicit communication.
Functions can be implemented externally as a Java library which allows L1 to be ex-
tended with new SMC mechanisms although extensions such as homomorphic encryption
are used directly as opposed to implementing an arithmetic black box as in SecreC.

Since L1 requires the programmer to understand the cryptographic primitives of SMC
and how to use them securely it is a relatively low-level language. It is more useful for
protocol designers as opposed to programmers implementing high-level algorithms or
business logic which is what SecreC is designed for.

Multiple SMC mechanisms are supported by L1 which is the topic of this thesis but it
is not directly comparable to SecreC because SecreC relies on an arithmetic black box
but L1 requires the programmer to explicitly use the underlying cryptographic methods
such as encryption. While the designers of L1 are concerned with supporting different
cryptographic primitives, SecreC is designed to support different implementations of a
PDK and the programmer is not required to understand cryptography.

2.4.5 DSL of Launchbury et al.

Launchbury et al. created a Haskell library and embedded DSL (EDSL) for developing
SMC programs [LDDAM12]. The library uses three party additive secret sharing for
numbers and XOR sharing for bit strings. To share an integer value x using XOR sharing,
shares x1, x2, x3 are generated such that x1⊕x2⊕x3 = x where ⊕ is the bitwise exclusive
or operator.

Their EDSL supports addition, subtraction, multiplication and logical operators on
shares and vectors of shares. The three computing parties are connected in a circle. The
language provides an operation for sending a value to the next neighbour and receiving a
value from the previous neighbour. Using network communication, generating random-
ness and computations with shares, the programmer can write protocols operating on
secret shared values.

14

Multiple program transformations are implemented which optimise the EDSL pro-
gram. Operations of the same type which do not depend on each other are grouped, i.e.
a single operation is applied to vectors of values point-wise. This reduces latency when
the SMC protocol requires multiple rounds of communication. For example, if multiplica-
tion requires r rounds and the program contains m separate independent multiplications,
there will be r ·m total rounds. When the operations are grouped, there will be r rounds.
The optimiser can also unroll loops which may allow independent arithmetic operations
in different loop iterations to be grouped. The execution of an SMC program alternates
between local computations and network communication. To further reduce network la-
tency, the EDSL allows multiple instances of a protocol to be executed concurrently which
allows computation and network communication of the protocol instances to overlap.

The EDSL has a different goal than SecreC because the programmer works with
shares directly and communicates explicitly with the other parties while SecreC uses an
arithmetic black box. It is more suitable for programming arithmetic protocols or combin-
ing protocols and logic in the same program. Although this language does not support
multiple SMC mechanisms in the same program (except arithmetic and XOR sharing
which are used for different types of values and are not completely interchangeable), the
issues addressed in this thesis do not apply.

2.4.6 DSL of Mitchell et al.

Mitchell et al. describe a language for writing SMC programs with formal static and
dynamic semantics and a proof of security [MSSZ12]. The language is implemented as a
Haskell EDSL and there is also a front-end compiler from specialised syntax to the EDSL.
Private and public conditionals, functions, mutable state and recursion are supported.

The language is defined in a generic manner assuming the existence of a secure ex-
ecution platform which provides protocols for classifying and declassifying values and
performing arithmetic on private values. Thus multiple SMC methods that fit their
formal definition of a secure execution platform are supported. They show that fully ho-
momorphic encryption and Shamir secret sharing [Sha79] are secure execution platforms.

The semantics are described abstractly in terms of some set of primitive data types
(e.g. booleans, integers) and some set of operations for working with values. The type
system uses information-flow to track the privacy level of values. The formal dynamic
and static semantics have been used to prove that the language is trace secure if the
underlying secure execution platform is secure.

Although the concept of a secure execution platform is similar to the PDK definition
and the language is thus PDK agnostic, multiple different PDKs can not be used in the
same program which is supported in SecreC. There is also no description of whether and
how the programmer can add secure execution platforms without changing the compiler.

2.4.7 PICCO

PICCO is an extension of the C language that is compiled into privacy-preserving C
programs that use Shamir’s secret sharing [ZSB13, ZBA15].

The generated C program is compiled and executed by the computing parties. PICCO
adds private values and conditionals to C. Due to performance concerns, the user can
specify the size of the primitive data types. For example, private int<20> x; declares
a private 20-bit integer variable. A large number of operators on private values have been
implemented, including division and bit-level operators such as shifting and bitwise logic.

15

As in SecreC, operations on arrays are supported which are applied point-wise. The
compiler disallows private values in contexts where public values are expected. PICCO
supports parallel for loops where the body of the loop is executed in parallel with different
loop indices. Statements outside of loops can also be executed in parallel by enclosing
them in square brackets.

Inputs are provided before the program is run by input parties and outputs can be
sent to different output parties. Clients do not communicate with the program while it
is running.

Since PICCO uses only Shamir’s secret sharing, the issues addressed in this thesis are
not relevant.

2.4.8 Wysteria

Wysteria is a language for writing SMC programs using boolean circuits and secret sharing
[RHH14]. It is a functional programming language with an advanced type system and
formally defined semantics that allows both private and public computations.

The parties (called principals) participating in the computation are first class values.
When binding the value of an expression to a variable, the mode of computation has
to be specified. There are two modes – parallel and secure. Parallel mode is used for
computations that are performed independently by the different parties, i.e. computations
on public values. Secure mode is used for distributed secure multi-party computations on
private values. When declaring the mode of an expression, the set of principals involved
in the computation must be declared. For example, if principal Alice has input x1 then

let x2 =par({ Alice })= x1 * 2

binds x1 * 2 to variable x2 on Alice’s machine. Special values called wires are used for
private values in secure mode computations. A wire with type W {Alice} nat contains
a natural number owned by Alice. It can be used in an expression with mode sec(ps)
if Alice is in the set ps. Values from multiple principals can be included in a wire which
is then called a wire bundle. For example, the following function solves the millionaires
problem [RHH14]:

is_richer = λv : W {Alice , Bob} nat.

let out =sec({Alice , Bob })= v[Alice] > v[Bob] in

out

The input v is a wire bundle containing the values of both Alice and Bob. The se-
cure computation that binds variable out securely compares the private value of Alice
and Bob which can be retrieved from the bundle using the square bracket syntax. Func-
tions also have a mode depending on the returned value. The mode of is richer is
sec({Alice, Bob}) which means it can only be called in expressions where both Alice
and Bob participate.

Principals and principal sets are first class values. For example, the following is the
signature of a function that computes the smallest element in a list where each element
is provided by a different principal.

min : (all : ps) → W all nat → W all ps(ν ⊆ all ∧ single ν)

The first parameter is the set of principals (ps is the type of a principals set). The
second parameter is the wire bundle containing the input of each principal. The returned
value is a wire bundle of principal sets. Wysteria has refinement typing and the type

16

ps(ν ⊆ all ∧ single ν) means that the principal set returned to all principals is
a single element subset of the input principals set, i.e. each principal will receive the
principal who has the minimum element. Since Wysteria is designed specifically for
garbled circuits and secret sharing, it is not concerned with supporting multiple PDKs
so the issues of this thesis are not relevant.

2.4.9 ObliVM-lang

ObliVM is a framework for secure computation [LWN+15]. ObliVM programs use an
implementation of Yao’s garbled circuits called ObliVM-GC which is written in Java.
Programs are written in a programming language called ObliVM-lang which is similar to
the C and C++ programming languages.

ObliVM distinguishes public and private values, supports private conditionals, inte-
gers with arbitrary bit length (like PICCO), polymorphism using templates (like Se-
creC), higher-order procedures (procedures that take other procedures as arguments)
and oblivious RAM (ORAM). ORAM allows vectors to be indexed with private val-
ues without leaking the index. This is useful for programming secure implementations of
common data structures and algorithms. The authors show implementations of Dijkstra’s
shortest path algorithm and an oblivious stack data structure.

ObliVM-lang supports phantom procedures which can be called in private condition-
als. Normally, a procedure call in a private conditional can be unsafe if it writes to a
public memory location because that would leak the condition. ObliVM always executes
procedure calls in both branches. For example, if the condition is false and the true
branch contains a procedure call, all writes to a variable in the procedure will obliviously
re-write the current value of the variable which leaves the state unchanged but produces
the same execution trace as if the procedure was actually called.

ObliVM-lang supports user defined types. The following example is from the ObliVM
article. Suppose that there is a Java class called BigInteger implementing an alternative
to the built-in arbitrary precision integers. This class can be used with the following
declaration [LWN+15]:

typedef BigInt@m = native BigInteger;

The @m variable is called a generic constant and designates the number of bits. Meth-
ods can be defined on ObliVM-lang types like this [LWN+15]:

BigInt@m BigInt@m.add(BigInt@m x, BigInt@m y)

= native BigInteger.add;

BigInt@m BigInt@m.multiply(BigInt@m x, BigInt@m y)

= native BigInteger.multiply;

BigInt@m BigInt@m.fromInt(int@m y)

= native BigInteger.fromInt;

int@m BigInt@m.toInt(BigInt@m y)

= native BigInteger.toInt;

These are similar to procedures in SecreC which use system calls to invoke external
code. ObliVM-lang thus also allows adding data types and alternative SMC methods by
programming protocols in Java. But ObliVM-lang is tailored to Yao’s garbled circuits
and the built-in types and operators will still use garbled circuits. While methods such
as these can be added to external types, operators can not be overloaded as is proposed
in this thesis.

17

3 Syntax

To describe the changes to the SecreC programming language, we will use a simplified
version of the language. We will describe the syntax and then give typing rules for terms
in this simplified language. We will use Backus Naur Form with a few extensions to
describe the syntax although the syntax is abstract, not concrete. The * operator is
used for repetition (zero or more occurences), + is used for repetition with at least one
occurence and ? means that the item is optional.

The real SecreC programming language supports modules and imports. Most mod-
ules do not define PDKs, operators and casts. It is assumed that a module with the
kind, operator and cast definitions is programmed for each protection domain kind. This
module can be imported by the programmer who wishes to use the PDK.

In this thesis, we add syntax for protection domain kind definitions and cast defini-
tions. The operator definition syntax is already in the SecreC language for operator
overloading. The rest of the syntactical constructs are included for completeness or be-
cause they are affected by the features added in this thesis.

The syntax of a program is given in Figure 2. A program consists of PDK definitions,
domain declaration, procedure definitions, operator definitions and cast definitions. The
procedure named “main” is executed when the program runs.

〈top level〉 ::= 〈kind definition〉
| 〈domain declaration〉
| 〈procedure definition〉
| 〈operator definition〉
| 〈cast definition〉

〈program〉 ::= 〈top level〉+

Figure 2: SecreC program grammar

The syntax of basic expressions and statements is given in Figure 3. The definitions of
integer and float literals and identifiers are omitted. Identifiers consist of alphanumeric
characters or underscores and do not start with a number. The set of operators and
built-in data types is minimal in this simplified language.

Using this simplified syntax, multi-dimensional arrays are relatively useless because
there is no indexing syntax. We can assume that there are built-in procedures for indexing
and assigning elements of vectors.

Note that the block statement rule only allows a single variable declaration in the
beginning of a block. This is a simplification and a C-style block {t1 x1; ...; tn xn;

s} can be re-written as {t1 x1; {t2 x2; {...{tn xn; s} ...}.
The value of a list of expressions between braces is a multi-dimensional array. For

example, a matrix can be written as {{1, 2}, {3, 4}}.
The rule ’(’ 〈data type〉 ’)’ 〈expression〉 is used for type conversions. For exam-

ple, (int) x converts the value of the variable x to an integer.
The declassify(e) expression is used to declassify a value. The value is made public

and revealed to all the servers. Before a SecreC program is installed on the Sharemind
servers, the declassify expressions must be inspected to make sure they do not reveal
too much information. This expression can be used to implement efficient algorithms
when some information can be leaked. For example, in statistics we often compute with

18

〈statement〉 ::= 〈identifier〉 〈assign operator〉 〈expression〉 ’;’
| ’while’ ’(’ 〈expression〉 ’)’ 〈statement〉
| ’if’ ’(’ 〈expression〉 ’)’ 〈statement〉

’else’ 〈statement〉
| ’return’ 〈expression〉 ’;’
| 〈expression〉 ’;’
| 〈statement〉 〈statement〉
| 〈block statement〉

〈block statement〉 ::= ’{’ 〈type〉 〈identifier〉 ’;’
〈statement〉 ’}’

〈expression〉 ::= 〈expression〉 〈binary operator〉 〈expression〉
| 〈unary operator〉 〈expression〉
| 〈expression〉 〈incdec〉
| ’declassify’ ’(’ 〈expression〉 ’)’
| 〈identifier〉
| 〈integer literal〉 | 〈float literal〉
| ’true’ | ’false’
| ’{’ 〈expression list〉 ’}’
| ’(’ 〈data type〉 ’)’ 〈expression〉
| 〈identifier〉 ’(’ 〈expression list〉 ’)’

〈expression list〉 ::= (〈expression〉 (’,’ 〈expression〉)∗)?
〈assign operator〉 ::= ’=’ | ’*=’ | ’+=’ | ’&=’

〈incdec〉 ::= ’++’ | ’--’
〈binary operator〉 ::= ’*’ | ’+’ | ’&’ | ’==’ | ’<=’
〈unary operator〉 ::= ’!’ | ’-’

〈type〉 ::= 〈identifier〉? 〈data type〉 〈dimension type〉?
〈data type〉 ::= 〈identifier〉 | 〈primitive data type〉

〈dimension type〉 ::= ’[[’ 〈integer literal〉 ’]]’
〈primitive data type〉 ::= ’bool’ | ’int’ | ’float’

Figure 3: Statement and expression grammar

filtered data. Patients in medical studies are separated into case and control groups.
Before calculating a statistic on filtered data we can reduce the data to just the values
that satisfy the filter which leakes the number of elements where the filter is true but not
which values satisfy the filter [BKLS14]. Leaking this number is generally not an issue.

19

〈procedure definition〉 ::= 〈template〉? 〈return type〉 〈identifier〉 ’(’
〈procedure parameter〉?
(’,’ 〈procedure parameter〉)∗ ’)’
〈block statement〉

〈return type〉 ::= ’void’ | 〈type〉
〈template〉 ::= ’template’ ’<’

〈quantifier〉 (’,’ 〈quantifier〉)∗ ’>’
〈quantifier〉 ::= ’domain’ 〈identifier〉

| ’domain’ 〈identifier〉 ’:’ 〈identifier〉
| ’type’ 〈identifier〉

Figure 4: Procedure definition grammar

The grammar of procedure definitions is given in Figure 4. The template syntax is
used for parametric polymorphism. The programmer can use a domain quantifier variable
to write a procedure which works with different domains. The domain variable is replaced
by a concrete domain used in the procedure call. For example, the following procedure
defines a procedure for sorting integer values of all domains (body omitted):

template <domain D>

D int [[1]] sort(D int [[1]] x) { }

The domain variable : kind form constrains the range of the domain variable to
protection domains from a specific kind. The syntax type variable is used for quantifying
over data types. The real SecreC programming language also allows quantification
over dimensionality (e.g. template<dim N>) but this has been left out for the sake of
simplicity.

3.1 Kind definitions

Currently, a PDK is defined as follows:

kind shared3p;

This definition includes no information about which data types and operations are sup-
ported by the PDK shared3p. Using the syntax added in this thesis, a PDK definition
consists of the name of the kind and a list of data type definitions. The PDK definition
syntax is given in Figure 5.

Most private data types have a corresponding public type. For example, a public
int can be converted to a private int (called classifying) and when a private int is
published it will be converted to a public int. Thus a data type definition should include
a corresponding public type parameter. There is not always a direct mapping between
public and private types. For example, we may want to define a private fixed point type
for efficient arithmetic on real numbers. To initialise the private fixed point values, we
want to use floating point literals so the corresponding public type would have to be
float.

It is possible that a type has no public representation. For example, SecreC currently
has types such as xor uint8, xor uint16, etc which are shared bitwise. That is, a value
x is shared as random values x1, x2, x3 such that x = x1 ⊕ x2 ⊕ x3 where ⊕ is the XOR
operator. This sharing scheme has more efficient comparison operators and can be used

20

〈kind definition〉 ::= ’kind’ 〈identifier〉 ’{’
〈data type definition〉+ ’}’

〈data type definition〉 ::= ’type’ 〈identifier〉 ’;’
| ’type’ 〈identifier〉 ’{’
〈data type def parameter〉
(’,’ 〈data type def parameter〉)∗ ’}’ ’;’

〈data type def parameter〉 ::= ’public’ ’=’ 〈primitive data type〉
| ’size’ ’=’ 〈integer literal〉

〈domain declaration〉 ::= ’domain’ 〈identifier〉 〈identifier〉 ’;’

Figure 5: Protection domain kind definition and domain declaration grammar

for sorting values by converting to the XOR-shared type from an integer or unsigned
integer type before sorting and convert back after sorting. This type does not have a
public representation and is only used for optimising algorithms. To support data types
like this, the public type parameter should be optional.

To support memory management, assignment and indexing by the SecreC compiler,
a data type definition should be able to specify the size of the private values in bits. It
is possible though that some data types do not have a flat representation in memory.
For example, a lot of cryptographic methods use arbitrary-precision arithmetic which
requires dynamic memory. Thus the size parameter should also be optional and the
compiler should use system calls for types without a specified size as it does now.

The following is an example of a protection domain kind definition with two private
data types:

kind my_kind {

type int { public = int , size = 64 };

type fix { public = float , size = 64 };

}

3.2 Operator definitions

Operator definitions already have limited support in SecreC. They are used to overload
operators for different combinations of operand types. For example, the compiler only
assumes the existence of multiplication system call that takes two private integer vectors
as inputs. In the case of arithmetic secret sharing, a more efficient protocol exists for
multiplying a private and a public integer vector. Overloaded operator definitions allow
the user to define more efficient operators for special cases. The operator definition syntax
remains unchanged in this thesis although type checking and semantics are improved.

21

〈operator definition〉 ::= 〈template〉? 〈type〉 ’operator’ 〈binary operator〉
’(’ 〈procedure parameter〉 ’,’
〈procedure parameter〉 ’)’
〈block statement〉

| 〈template〉? 〈type〉 ’operator’ 〈unary operator〉
’(’ 〈procedure parameter〉 ’)’
〈block statement〉

Figure 6: Operator definition grammar

The following is an example of an operator definition in the full SecreC language:

template <domain D : shared3p >

D int [[1]] operator + (D int [[1]] x, D int [[1]] y) {

__syscall (" shared3p :: add_int_vec",

__domainid(D), x, y, y);

return y;

}

This defines the addition operator for type int for all protection domains of kind shared3p.
The syscall syntax is used in the actual SecreC language to invoke system calls. In
this case, a system call with the name shared3p::add int vec is called with parameters
x, y and the result is written to y. The identifier of the domain is also passed to the
syscall. This is how most operator definitions will be written: they invoke a system call
which implements the protocol in a module written in C++ or some other programming
language. In some occasions, when an optimised protocol has not been implemented,
the operator can be defined in terms of other operators. In the case of real numbers, it
makes sense to implement an inverse protocol and use it with multiplication to implement
division.

3.3 Cast definitions

We extend the language to support cast definitions similarly to how operators are defined.
Syntactically, a cast definition is just a procedure named “cast” that has one argument.

〈cast definition〉 ::= 〈template〉? 〈type〉 ’cast’ ’(’ 〈procedure parameter〉
’,’ 〈procedure parameter〉 ’)’
〈block statement〉

Figure 7: Cast definition grammar

The following is an example of a cast definition in the full SecreC language:

22

template <domain D : shared3p , type T>

D T[[1]] cast(D int [[1]] x) {

D T[[1]] res(size(x));

__syscall (" shared3p :: conv_int_to_$T_vec",

__domainid(D), x, res);

return res;

}

Note $T in the name of the syscall. The SecreC compiler replaces it with the name of
the type bound to T. In a variable declaration, the expression in the parentheses after the
variable name gives the shape of the value. In this case, res is a vector as long as x. This
definition defines conversion from int to all types in the shared3p kind. If conversions
to all types are not supported, cast definitions can be written for all supported cases
using overloading. Unlike C++, SecreC supports overloading based on the type of the
returned value which is required for cast definitions.

23

4 Type system

This section describes the formal type system of the subset of SecreC described in
Section 3. The subset includes language features that have been added in this thesis or
are affected by the changes.

4.1 Value types

Information flow control is a method of protecting privacy in programming languages
[Mye99]. Values are labeled with security classes and the type system is designed to
facilitate static tracking of the flow of sensitive information. Derived values must preserve
the security class of the value. For example, in an assignment x = e, the label of the
variable x must be at least as restrictive as the label of the value of e [ML98]. The label
of the variable ensures that the assigned variable is not used in a context which leaks the
value.

In our case, the protection domain of the type designates the privacy of the value.
There are two kinds of protection domains: private protection domains and the special
public domain of public values. The relation v defines a partial ordering of the domains:

d v d

public v d,

where d is a variable designating a private protection domain. The definition says that
public values can flow into every protection domain and private values from domain d
can only flow in domain d.

To find the domain where values of domains d1, d2 can flow, we use the least upper
bound (join) operator which is designated as d1td2. There is a special value > which is at
the top of the hierarchy. That is, d v > for every domain d. In our case, d1td2 = >means
that there is no protection domain where values from both d1 and d2 can flow. A partial
ordering with a least upper bound is an algebraic structure called a join-semilattice.

For a user-defined data type t of some PDK, we want to be able to use a public value
of the public type corresponding to t in a context where t is expected. For example, if
we define a kind with a fix type as follows:

kind shared3p {

type fix { public = float };

}

domain pd_shared3p shared3p;

we want the following program snippet to type check:

float x = 42;

pd_shared3p fix y = x;

Semantically, the value of x should be implicitly classified (converted to a private
value) as float is the corresponding public type of fix. In this thesis, we also need
subtyping of data types to support statements and expressions where the private data
type and its corresponding public data type co-occur. We can not just use a lattice of
data types because the relation between private and public data type is in the PDK
definition. Due to this, we use a lattice of pairs of protection domain and data type.

Let public(k, t) be the public type corresponding to t in kind k. Let public(k, t) = >
if there is no corresponding public type. Let D be the set of protection domains, types(k)

24

the set of user-defined data types in kind k and kind(d) be the PDK of protection domain
d. We can now define the partial ordering on the combination of protection domain and
data type:

(d, t) v (d, t), if d ∈ D ∧ t ∈ types(kind(d))
(public, t1) v (d, t2), if d ∈ D \ {public}∧

t1 ∈ types(public)∧
t2 ∈ types(kind(d))∧
public(kind(d), t2) = t1.

The first rule states reflexivity, that is, data can flow inside a domain if the type does
not change. The second rule states that information can flow from the public domain to
a private domain if the data types match according to the public type parameter of the
private data type definition.

We will use the notation d t n to represent the triple of domain, data type and di-
mensionality. The variables d, t, n, x are metavariables used for domains, data types,
dimensionalities and variables in the language.

4.2 Inference rules and coinduction

The type system is formalised using an axiomatic system. An axiomatic system consists
of axioms which are statements that we accept as true, and inference rules which allow
true statements to be derived from axioms. If the set of all syntactically valid programs
in our programming language is P , we want to use type checking to find the subset of
type-correct programs X ⊆ P . To show that a program is correct we produce a derivation
tree which has the program as the root, inference rules as edges and axioms as leaves.
This derivation is a proof of that the program is correct according to our typing rules.

Let cf be a metavariable ranging over floating-point literals and ci a metavariable
ranging over integer literals. Let float and int be the types of floating-point and integer
values. Let us use the following simple language of arithmetic expressions:

〈e〉 ::= cf
| ci
| 〈e〉 ’*’ 〈e〉
| 〈e〉 ’+’ 〈e〉

Figure 8: Grammar of arithmetic expressions

We can give axioms which state that integer and floating-point literals have types int

and float:

ci : int cf : float

Figure 9: Axioms

The statement (typing judgement) is below the horizontal line and the premises are
above the line. Since these two rules are axioms, there are no premises, that is, the
typing judgements are always true. Let t be a metavariable ranging over types. We use
the following rules for the two operators:

25

e1 : t e2 : t
e1 + e2 : t

e1 : t e2 : t
e1 * e2 : t

Figure 10: Inference rules

The rules require that the operands of an arithmetic expression have the same type as
the expression. We can now write a derivation tree proving that the expression 1+(2∗3)
has type int:

1 : int
2 : int 3 : int

2 ∗ 3 : int
1 + (2 ∗ 3) : int

Figure 11: Example derivation

The typing rules define a relation on the set of syntactically correct programs P which
gives us the set of well-typed programs X ⊆ P (programs that can be assigned a type).
There are two ways to interpret a set of inference rules: inductively and coinductively.
Inductive interpretation starts from the smallest set of programs which have a type (that
is, integer and floating point literals) and adds programs to the set which can be derived
from well-typed programs using inference rules. This process is repeated on the resulting
set until no more programs can be added to the set. If we consider the step of this process
as a function f operating on a set of programs, then X is the least fixed-point of f .

Using coinduction, we start from the set P and remove all programs that can not be
proven using our inference rules. The set X is thus the greatest fixed-point. Coinduction
allows programs with an infinite derivation to be type-correct. For example, if we also
interpreted the grammar coinductively, we could have an infinite term 1+1+ . . .+1 with
type int. This term is not well-typed using inductive interpretation of the typing rules.

The typing rules in this thesis use coinductive interpretation which is emphasised
by double lines in the inference rules. Because SecreC uses procedure templates, a
procedure can not be checked before the template is instantiated with type variables.
The typing rule for procedure calls checks that the procedure definition is correct. If we
used inductive interpretation, such a rule would prohibit mutually recursive procedure
definitions. For example, assume that we have defined procedures a and b. The definition
of a calls b and the definition of b calls a. To prove that a is well-typed, we need to prove
that b is well-typed, which requires us to again prove that a is well-typed and so on.
The derivation is infinite which means that the program is not well-typed using inductive
interpretation.

4.3 Typing rules

The typing rules for the language extensions in this thesis are based on [BLR14]. The rules
of assignments and variable declarations have been changed due to the addition of user-
defined types. Rules have been added for declassification, type conversion, binary, unary
and postfix expressions, operator definitions and type conversion definitions. The rules
of PDK definitions and domain declarations are given informally due to their simplicity.

Currently the language has no reference types so there can be no aliasing. Due to this,
we only consider the types of bound variables and not the types of memory locations.

26

The typing rules do not formalise every static check that would be implemented in
a real compiler. For example, the SecreC compiler checks that every execution path
in a non-void procedure ends with a return statement. It also checks for unreachable
statements (such as statements after return).

In SecreC, procedure names are not required to be unique. This is used for over-
loading – giving different definitions of a procedure based on the types of arguments and
returned value. Due to this, we refer to functions with their locations. Let L be the set of
program source locations. A function definition with name f and location ` ∈ L will be
referred to as f `. We will use the same notation for operator and cast definitions in our
type system because they are procedures with a special name. We will use the following
notational conventions:

• pdk(P) and pd(P) designate the set of protection domain kinds in P and the set
of protection domains in P . We assume that the protection domain public and its
PDK are implicitly defined in every program.

• kindP (d) designates the PDK of protection domain d. We treat it as a set of data
type definitions. The PDK of the public domain includes the built-in types bool,
int, float.

• argP (`) designates the list of declarations of formal arguments and retP (`) the return
type of the definition at location `.

• implP (f ; d1 t1 n1, . . . , dm tm nm → d) ∈ L ∪ {⊥} is the location of the best match-
ing definition of all procedures with name f or ⊥ if there is no matching defini-
tion or multiple matching definitions that are equally fitting. The match is deter-
mined based on the domains d1, . . . , dm, data types t1, . . . , tm and dimensionalities
n1, . . . , nm of the arguments and the domain d of the output. Note that the real
SecreC programming language also allows overloading on other components of the
return type, not just the domain but for simplicity we only use the domain here.
Likewise, for selecting operator and cast definitions, we use implopP . It is not spec-
ified how implP selects the best matching procedure definition. The algorithm for
selecting the best one from matching operator and cast definitions will be explained
later.

• δ(`) is the set of protection domain quantifiers of the definition at location `. τ(`)
is the set of data type quantifiers of the definition at location `.

• bodyP (`) designates the body of the definition at location `. Given mappings
∆ : δ(`) → pd(P) and T : τ(`) → pd(P), body∆,T

P (`) designates the body of
the definition at location ` where domain quantifier variables d ∈ δ(`) have been
replaced by ∆(d) and type quantifier variables t ∈ τ(`) have been replaced by T (t).
arg∆,T

P (`) and ret∆,T
P (`) are defined similarly.

• unif`(d
′
0 t
′
0, . . . , d

′
m t
′
m) = (∆, T) gives a mapping ∆ from δ(`) to protection domains

declared in the program such that ∆(di) = d′i for every di quantified by the definition
at `. Likewise, T is a mapping from type quantifiers τ(`) used in the definition at `
to data types. The function unifop` returns these mappings for operator definitions.

• main(P) designates the main procedure of program P .

27

• numeric(t) is a predicate that is true if t is a numeric data type (int, float).

• relational(o) is a predicate that is true if o is a relational operator (e.g. <, ≥).

• cf and ci are metavariables that range over floating point and integer literals.

The meanings of the judgements used in the typing rules are:

• ` P states that the program P is well-typed.

• P ; ∆;T ` f ` means that the definition f ` in the program P is well-typed if domain
quantifiers in δ(`) are replaced by the domains given by ∆ and type quantifiers in
τ(`) are replaced by the types given by T .

• P ; d t n;x1 : d1 t1 n1, . . . , xm : dm tm nm ` s means that s is well-typed in a procedure
that has return type d t n and the free variables xi have types di ti ni. We will use
Γ as shorthand for x1 : d1 t1 n1, . . . , xm : dm tm nm. The notation x : d t n,Γ means
that x is given type d t n in context Γ (Γ is extended or the type of x is replaced).

• P ; Γ ` e : d t n means that the expression e has type d t n in the given context.

The typing rules for basic expressions are given in Figure 12.

P ; Γ ` true : public bool 0 P ; Γ ` false : public bool 0

P ; Γ ` cf : public float 0 P ; Γ ` ci : public int 0
(x : d t n) ∈ Γ

P ; Γ ` x : d t n

(d1, t1) v (d, t) . . . (dm, tm) v (d, t)
P ; Γ ` e1 : d1 t1 (n− 1) . . . P ; Γ ` em : dm tm (n− 1)

P ; Γ ` {e1, . . . , em} : d t n

P ; Γ ` e : d′ t′ n (public, t) v (d′, t′) d′ 6= public

P ; Γ ` declassify(e) : public t n

Figure 12: Expression typing rules

The rule for multi-dimensional array literals checks that the dimensionality of the
components of the array is one less than the dimensionality of the array. That is, a vector
consists of scalars, a matrix consists of vectors and so on. The condition (di, ti) v (d, t)
checks that the pair of domain and data type of the sub-expression type precedes the pair
of the array type according to the partial ordering defined in Section 4.1. This allows data
from the public domain to flow into a private domain. The definition of the ordering also
requires that the data types match. For example, we can write pd shared3p fix[[1]]

x = {1.2, 3.4}; where the public floating point scalars are implicitly classified. This
rule is a simple example of how we handle the addition of user-defined data types in
this thesis.

The rule for declassification checks that the expression e being declassified is well-
typed. The domain of the declassify expression must be public. The dimensionality of

28

expression e and the result must match. The condition (public, t) v (d′, t′) is required
due to the addition of user-defined private data types. It checks that the data type t of
the result is the public type corresponding to t′.

The rules for the program, procedure definitions and procedure calls are given in
Figure 13.

P ;⊥⊥⊥; ∅ ` main(P)

` P

P ; Γ ` e1 : d1 t1 n1 . . . P ; Γ ` em : dm tm nm

` = implP (f ; d1 t1 n1, . . . , dm tm nm → d)

(∆, T) = unif`(d t, d1 t1, . . . , dm tm) P ; ∆;T ` f ` ret∆,T
P (`) = d t n

P ; Γ ` f(e1, . . . , em) : d t n

P ; ret∆,T
P (`); arg∆,T

P (`) ` body∆,T
P (`)

P ; ∆;T ` f `

Figure 13: Procedure and program typing rules

A program P is well-typed if it contains a function named “main” which is well-typed.
The rule for procedure calls checks that:

• There is a single best matching definition of f (found by the function implP) in
program P . Note that if ` = ⊥, the procedure call does not type check.

• The body of the procedure f ` is well-typed if the quantified domain variables are
replaced by the domains used in the procedure call arguments.

• The arguments of the procedure call are well-typed.

• The types of supplied arguments match the types of formal arguments. We do not
use implicit classification with regular procedure calls.

• If the domain quantifier variables are replaced by domains used in the procedure
call, the type of the returned value is the same as the type of the procedure call
expression.

The rule which checks the procedure definition has access to the domain quantifier
mapping ∆ and type quantifier mapping T . When type checking the body of the pro-
cedure, the quantifiers in the return type and formal parameter list are substituted and
the formal parameters are added to the context. This is where the return and parameter
types are introduced to the context P ; d t n; Γ. Note that a procedure is type-checked at
a call site and requires the quantifier mappings ∆ and T . In practical terms, this means
that a procedure definition is not checked until a call of the procedure is checked.

The typing rules for basic statements are given in Figure 14.

29

P ; d t n; Γ ` s1 P ; d t n; Γ ` s2

P ; d t n; Γ ` s1 ; s2

d ∈ pd(P) t ∈ kindP (d) n ≥ 0 P ; d0 t0 n0; x : d t n,Γ ` s
P ; d0 t0 n0; Γ ` {d t[[n]] x; s}

x : d t n ∈ Γ P ; Γ ` e : d′ t′ n′ (d′, t′) v (d, t) n′ = 0 ∨ n′ = n

P ; d0 t0 n0; Γ ` x = e;

P ; Γ ` e : public bool 0 P ; d t n; Γ ` s
P ; d t n; Γ ` while e s

P ; Γ ` e : public bool 0 P ; d t n; Γ ` s1 P ; d t n; Γ ` s2

P ; d t n; Γ ` if (e) s1 s2

P ; Γ ` e : d′ t′ n (d′, t′) v (d, t)

P ; d t n; Γ ` return e;

P ; Γ ` e : d t n

P ; d0 t0 n0; Γ ` e;

Figure 14: Statement typing rules

The block statement rule checks the following conditions:

• The domain of the declared variable has been declared in the program.

• The data type of the variable is defined in the kind of the domain of the variable
type.

• Dimensionality is a natural number.

• The statement of the block is well-typed in the context extended with the type of
the declared variable.

The assignment given here only applies to regular assignment, not arithmetic assign-
ment. This rule takes into account user-defined private data types which were added in
this thesis. It checks the following conditions:

• x has been declared.

• The expression e is well-typed.

• The pair (d′, t′) of domain and data type of the expression e matches the pair (d, t)
of the variable x according to the partial ordering.

• Dimensionality of the value of e is zero (scalar) or equal to the dimensionality of
the variable. If a scalar is assigned to a higher dimensional variable, all values are
replaced with the scalar.

It is required that the conditions of while-loops and conditionals are public boolean
scalars. If a private boolean would be allowed as the condition of an if-then-else statement,
there would be two main options to evaluate the statement:

30

• The runtime system stops when evaluating the condition (exception).

• The runtime system declassifies the condition to decide which branch to evaluate.
This leaks the private condition.

Neither behaviour is desirable. If if-then-else was an expression, it would be possible
to evaluate both branches and then combine them. For example if b is the condition
(represented as zero or one) and t, f are the values of the branches, the result would be
b · t + (1 − b) · f . This does not work well in a language with side effects and can be
very inefficient so we require that the condition is always public. Arithmetisation can be
used manually if the condition is not public. The SecreC standard library provides a
procedure choose(condition, trueValue, falseValue) for this purpose.

The return statement rule again allows a public value to be returned when a private
value is expected like the assignment rule.

The expression statement rule requires that the expression e is well-typed and has
some type d t n.

4.4 Kind definitions and domain declarations

We have now described the rules of the basic language features, including the changes
required to support user-defined data types, and now turn to the extensions added by
the author that will allow PDKs (including private data types), operators and type con-
versions to be defined.

The rules for kind definitions and domain declarations are very simple so they will be
given in natural language without formal rules. The rules for PDK definitions are:

• The names of PDKs must be unique.

• The names of data types in a PDK must be unique. It is allowed to have data types
with the same name in different PDKs.

• The size of a data type defined in a PDK definition must be one or a multiple of
eight. If the size of a value is some number of bytes, the compiler can easily generate
memory management (allocation, deallocation, assignment, indexing) code. Data
type size of one is supported to efficiently represent booleans in bit vectors.

• If the defined type has the name of a built-in type then the corresponding public
type must be the built-in type. For example, type int { public = int } is legal
but type int { public = float } is not. This is used to avoid confusing the
programmer who will be using the PDK. In this case the public type parameter is
optional and will be set to the correct type if the parameter is omitted.

The rules for protection domain declarations require that the names of protection
domains are unique and the PDK of each protection domain is defined in the program.

4.5 Operator definitions and arithmetic expressions

In SecreC, arithmetic expressions can have multi-dimensional arrays as operands. Op-
erators are applied point-wise. When one operand is a scalar and the other is not, the
scalar is supplied as one operand when computing each value of the higher dimensional

31

operand. An issue with allowing the user to define operators is that there are a lot of
combinations of parameter types. The programmer of a protection domain kind would
have to write a lot of definitions. For example, if an operator definition is a normal pro-
cedure and we require actual parameter types to be equal to formal parameter types, all
the following combinations would require a separate definition for each binary operator:

• private scalar ⊗ private scalar

• private scalar ⊗ public scalar

• private vector ⊗ private vector

• private vector ⊗ public vector

• private vector ⊗ private scalar

• private vector ⊗ public scalar

As described in Section 2.3, if there are n data types and m supported binary operators
in a PDK, there would be up to n ·m · 3 · 3 definitions. Since most definitions are similar
(they call a system call with a structured name depending on the operand types), it would
probably be possible to generate the source code of the definitions using an external
program. This is not desirable because the module containing the PDK definition should
be readable and extensible by a human. Our goal is to reduce the number of definitions
that the programmer has to write.

PDK modules usually define a single system call for each combination of data type
and operator which takes vectors as inputs. This is actually the only required protocol
to support all the different combinations. For example, let us assume that we have a
definition for multiplying private vectors. To multiply two private scalars, we can consider
the scalars as one-element vectors. To multiply a private vector a with a private scalar b
we can create a vector b′ with the shape of a where all elements are b and multiply a and
b′. If one operand is public we can classify it. Thus, it should be sufficient to write just
a definition on private vectors for each operator and data type combination which calls
the system call implementing the arithmetic protocol on vectors. This definition could
then be used in all expressions.

Sometimes, it is possible to implement a more efficient protocol for some combina-
tion of operands. We should also allow definitions where one of the operands is public
or scalar. An arithmetic expression should be compiled to use the most specific match-
ing implementation which requires the smallest number of implicit classifications and
reshaping.

32

P ; Γ ` e1 : d1 t1 n1 . . . P ; Γ ` em : dm tm nm

` = implopP (o; d1 t1 n1, . . . , dm tm nm → d t n)
(∆, T) = unifop`(d t, d1 t1, . . . , dn tn)

P ; ∆;T ` o` ret∆,T
P (`) = d0 t0 n0

arg∆,T
P (`) = x1 : d′1 t

′
1 n
′
1, . . . , xm : d′m t

′
m n

′
m

(n1 = . . . = nm) ∨ n1 = 0 ∨ . . . ∨ nm = 0
(n1 = n′1 = 0 ∨ n′1 = 1) ∧ . . . ∧ (nm = n′m = 0 ∨ n′m = 1)

d1 t . . . t dm = d0

(d1, t1) v (d′1, t
′
1) . . . (dm, tm) v (d′m, t

′
m)

P ; Γ ` o(e1, . . . , em) : d t n

Figure 15: Arithmetic expression typing rule

The typing rule for arithmetic expressions is given in Figure 15. We treat arithmetic
expressions as calls to special functions so it is similar to the procedure call rule. We
assume that there are built-in implementations for all public types. The variable o ranges
over operator names. The rule checks the following conditions:

• The operands are well-typed.

• There is a single best matching definition. If ` = ⊥, the definition is missing and
type checking fails.

• The judgment P ; ∆;T ` o` checks that the operator definition type checks when the
domain quantifier variable is replaced with a domain used in the arithmetic expres-
sion and the type quantifiers are replaced with data types used in the arithmetic
expression. The method for finding the mappings ∆ and T is explained later.

• The condition (n1 = . . . = nm) ∨ n1 = 0 ∨ . . . ∨ nm = 0 checks that the operands
have the same dimensionality or one of them is zero. Note that we only have unary
and binary operators so m ⇐ 2 which means that in practice we check that in
a binary operation, if one of the operands is a multi-dimensional array then the
second operand must be a scalar or have the same dimensionality.

• The condition (n1 = n′1 = 0 ∨ n′1 = 1) ∧ . . . ∧ (nm = n′m = 0 ∨ n′m = 1) checks that
the dimensions of the operands match the dimensions of the operator definitions.
If the definition expects a scalar, the operand must be a scalar (ni = n′i = 0). If
the definition expects a vector then it does not matter what the dimensionality of
the operand is because scalars and multi-dimensional arrays can be converted to
vectors. The type checking rule of operator definitions does not allow parameters
with a dimensionality other than 0 or 1. Arrays with higher dimension can still be
used in arithmetic expressions because a value with any dimension can be converted
into an flat array. This is described later with the operator definition rules.

• The least upper bound of the domains of the types of the operands is equal to
the domain of the return type of the operator definition (d1 t . . . t dm = d0).
This condition is used to ensure that the compiler does not use a private definition
when a public definition can be used. For example, let us assume that this rule
is omitted, that there is a private integer multiplication definition and that the

33

expression has two public operands and requires a private result. The definition
matches the expression because the operands can be implicitly classified due to the
(di, ti) v (d′i, t

′
i) rule. This would happen in a statement such as pd shared3p int

x = 3 * 4;. It is more efficient to multiply public values and then classify the
result than to classify the operands and multiply private values so we want to avoid
using the private definition for public multiplication.

• The (di, ti) v (d′i, t
′
i) condition allows operations on a mix of public and private

operands. For example, if there is a definition for private integer multiplication,
the expression x * 2 where x is a private integer, is legal. The public operand is
implicitly classified and the private definition is used.

n, n1, . . . , nm ∈ {0, 1} max(n1, . . . , nm) = n
(d1, t1) t . . . t (dm, tm) = (d′, t′) 6= > t′ = t if ¬relational(o)

|δ(`)| ≤ 1 d′ = d t 6= void

arg∆,T
P (`) = x1 : d1 t1 n1, . . . , xm : dm tm nm ret∆,T

P (`) = d t n

P ; ret∆,T
P (`); arg∆,T

P (`) ` body∆,T
P (`)

P ; ∆;T ` o`

Figure 16: Operator definition typing rule

The operator definition typing rule is given in Figure 16. It is similar to the procedure
definition rule. The conditions are:

• The operands and the returned value are either scalars or vectors. A definition tak-
ing two vectors can be used for all pairs of dimensionalities because a scalars and
arrays with a dimension higher than one can converted to a vector. The resulting
value can be converted back to a multi-dimensional array, if necessary, by copying
the shape of the operand. This simplification allows a single definition (taking two
vectors and returning a vector) to be written for all combinations of input dimen-
sions. Scalars are allowed in order to write optimised definitions for expressions
taking a scalar and a multi-dimensional array.

• The dimensionality of the returned value is the maximum of the dimensionalities
of the operands. A definition taking two vectors and returning a scalar does not
make sense when operators are expected to work point-wise.

• Let (d′, t′) be the least upper bound of the domain and data type pairs of the
operands. If operator o is not relational then t′ must equal the data type of the
returned value. If o is relational then the least upper bound must not be > (i.e.
it must be defined). This condition ensures that definitions are not written for
different types of operands or return value. For example, if a definition takes float
inputs and returns an int then t′ = floattfloat = float 6= int so the definition
does not type check. When an operator takes an int and a float as inputs then
t′ = int t float = > which does not equal any data type. Relational operators
usually return boolean values so we can not require t′ = t, otherwise int or float

comparison can not be defined. Sometimes, for the sake of simplicity, a PDK
developer may wish to emulate booleans using numbers as in the C programming

34

language. Thus, when defining relational operators, the only requirement for the
operand data types is that they match (the least upper bound is not >). We can not
write these conditions for relational and other operators as the equality of operand
data types or the equality of operand and return data type because operands can
also be public. For example, if we have defined type fix { public = float }
we may want to define a multiplication of a private fix and a public float. This
should be legal since float is the corresponding public type of fix.

• There is at most one domain quantifier. Operators are defined on data types of
PDKs. In a single arithmetic expression, only two domains make sense: some
private domain and the public domain. There is only a single public domain so we
only need a quantifier for private domains. The procedure reclassify should be
used to explicitly convert values between different protection domains if necessary.

• The least upper bound of the domains of the types of the operands is equal to
the domain of the returned value (d′ = d). This is used to avoid definitions that
break the assumption about data flow between protection domains. For example,
a definition of multiplication that takes two private values as inputs and returns a
public value is illegal because it would have to declassify the result. A definition
taking a private and a public value and returning a private value is valid and can
be used to write an optimised implementation for this special case. Note that this
rule also disallows a definition that takes two public values and returns a private
value.

• The type of the returned value is not void. This is disallowed by the t′ = t and
t′ 6= > rule for non-relational operators but needs to be checked for relational
operators.

The typing rule for postfix increment expression is given in Figure 17. The rule for
postfix decrement is exactly the same except the subtraction operator is used. The full
SecreC language also has prefix increment and decrement operators which are type
checked in the same manner.

t′ = public(kindP (d), t) numeric(t′)
(∆, T) = unifop`(d t, public t

′)
` = implopP (+; d t n, public t′ 0→ d t n)

P ; ∆;T ` +` P ; Γ ` a : d t n

P ; Γ ` a++ : d t n

Figure 17: Postfix increment typing rule

An increment expression again calls an operator definition like unary/binary expres-
sions. The typing rule checks the following conditions:

• The value being incremented type checks.

• The data type of the value has a corresponding numeric public type. If t′ =
public(kindP (d), t) = ⊥ or t′ is not numeric, type checking fails because we do
not know how to create the value one for this private type. This could be solved by
allowing the user to define increment and decrement operators as well. Since this

35

case is not common, we use the addition definitions so that the PDK programmer
can write fewer definitions.

• There is a definition of addition for the type of the value that is being incremented.
Note that the user can not define an increment operator. implopP searches for an
addition definition that takes an operand with the type of a and a public scalar
with the corresponding public data type of t. The compiler creates a value of one
with the type t′ and calls the addition definition with a and the public one. implopP

considers the fact that scalars can be converted to vectors and public values can be
classified so definitions taking two private values and/or two vectors will also work.

• The operator definition type checks if the domain quantifier is replaced by the
domain of the value being incremented.

The rule for arithmetic assignment is given in Figure 18. For the sake of simplicity, it
is given for the expression a += c. The rule is the same in other cases: in the expression
a *= c, we search for a definition of multiplication and so on.

` = implopP (+; d0 t0 n0, d1 t1 n1 → d0 t0 n0)
(∆, T) = unifop`(d0 t0, d0 t0, d1 t1) P ; ∆;T ` +`

P ; Γ ` a : d0 t0 n0 P ; Γ ` b : d1 t1 n1

P ; Γ ` a += b : d0 t0 n0

Figure 18: Arithmetic assignment typing rule

The arithmetic assignment rule is straightforward. We find an addition definition
which can take a and b as inputs. The rule checks the following conditions:

• Variables a and b are well-typed. The type of the expression is the type of a.

• There is a single best matching definition of addition for parameters with the types
of a and b.

• The operator definition type checks when the quantifier variables are replaced using
the mapping ∆ or T .

4.6 Cast definitions and cast expressions

P ; ∆;T ` cast` t ∈ kindP (d) t′ 6= void

` = implopP (cast; d t′ → d t) (∆, T) = unifop`(d t, d t
′)

P ; Γ ` e : d t′ n

P ; Γ ` (t) e : d t n

Figure 19: Cast expression typing rule

The typing rule for cast expressions is given in Figure 19. We assume that there are
built-in definitions for cast definitions between types in the public domain and they are
not type checked. The typing rule checks the following conditions:

36

• The expression e is well-typed.

• The type of e is not void. This is for emphasis but does not make a difference
because a definition of a cast from void to another type is invalid.

• The data type t, which the value is being converted to, exists in the PDK of d.

• There is a single best matching cast definition.

• The cast definition is well-typed when the quantifier variables are replaced using
the mapping ∆ or T .

The function unifop` finds the quantifier mappings ∆ and T . Here we consider a cast
as a unary operator which allows us to use unifop` which binds the single allowed domain
quantifier variable to the domain of the expression whose result is being converted.

The function implopP finds the best matching cast definition. The weighing system
described for ordering operator definitions is also used for cast definitions. In practice,
we do not need to count implicit classifications for casts because this is not allowed by
the cast definition rules.

|δ(`)| ≤ 1 d = d0 6= public n = n0 = 1 t 6= void

ret∆,T
P (`) = d t n arg∆,T

P (`) = x : d0 t0 n0

P ; ret∆,T
P (`); arg∆,T

P (`) ` body∆,T
P (`)

P ; ∆;T ` cast `

Figure 20: Cast definition typing rule

The rule for cast definitions is given in Figure 20. It checks the following conditions:

• The body of the definition is well typed when the quantifier variables are replaced
using the mapping ∆ or T .

• The returned data type is not void. This is added for emphasis. It is also guaran-
teed by the return domain and dimension rules.

• The domain of the argument and returned value is not public and it is the same.
This means casts can be defined only between private types in a single domain.
Allowing the parameter of the cast to be public is not useful because the rule for
assignment already allows us to write a statement like uint b; pd shared3p int

a = (int) b; where the result of the cast is implicitly classified.

• The dimensionality of the argument and returned value is one. The definition must
thus operate on a vector. Like in the case of operator definitions, a definition
written for vectors can be used with scalars (which can be converted to one element
vectors) and arrays with higher dimensionality (which can be flattened before the
cast and reshaped to the original dimensions after the cast).

37

4.7 Unification and ordering of definitions

The mapping ∆ from template domain quantifier variables to concrete domains and
mapping T from type quantifiers to concrete data types is returned by the function unif`,
in the case of procedures, or unifop`, in the case of operator definitions. The procedure
unifier iterates over pairs of formal parameter type and supplied parameter type. If
quantifier variables occur in the formal parameter type, bindings are added to ∆ or T
which map the variables to the types in the supplied parameter. In the following example,
T is bound to int since the value passed in the position of the formal parameter x has
type int:

template <type T>

T factorial(T x) {

if (x == 0) return 1;

return x * factorial(x - 1);

}

void main() {

int x = 5;

print(factorial(x));

}

Unification may fail in the following cases:

• A quantifier variable declared in the template<. . .> list does not appear in the
signature of the procedure.

• The same variable is used in the position of different components of the type. For
example a parameter is declared T T x which would mean that T is both a data
type and a domain.

• A variable is bound to two different types.

• A domain quantifier variable has a constraint kind but the domain bound to the
variable is not from that kind.

Unifying operator definition quantifiers proceeds almost exactly the same way as for
procedure templates. The typing rule for operator definitions required that there is at
most one domain quantifier. In the case of unary operators, the domain quantifier is
bound to the domain of the operand. If we have a binary expression with operand
domains d1 and d2, the domain quantifier is bound to d1 t d2. If d1 t d2 = > then
unifop` fails. If a data type variable t is bound to data types t1, . . . , tm with domains
d1, . . . , dm, then instead of requiring ti to be equal (as unif` does), the bound type is t′

where (d′, t′) = (d1, t1) t . . . t (dm, tm). If the least upper bound is >, unifop` fails and
the operator does not match the expression.

The following program snippet illustrates why it was decided to bind t′ like this:

kind shared3p {

type fix { public = float };

}

domain pd_shared3p shared3p;

template <domain D : shared3p , type T>

38

D T[[1]] operator * (D T[[1]] x, D T[[1]] y) {

// body omitted

}

void main() {

pd_shared3p fix x;

float y;

x * y;

y * x;

}

The definition should be a match for both expressions because we can classify y to a
value of type fix. In the expression x * y, if we first bind T = fix then unification fails
because the second operand binds T = float 6= fix. If instead of equality, we require
that the type being bound is less than or equal to the type already bound (according
to the partial ordering) then the expression y * x would fail because fix v float does
not hold. When computing the least upper bound of the types bound to T we get
fix t float = fix which instantiates the operator template correctly.

To find the best matching operator definition, implopP finds all matching definitions,
assigns each a weight and returns the location of the match with the lowest weight.
Weighing is designed to prefer more specific definitions to general definitions. If multiple
matches have the same weight then the expression does not type check. The weight of an
operator definition consists of three components which are compared one after the other
(i.e. the second component is compared only if the first is equal). The components are:

(1) Domain weight. Definitions without a domain quantifier have weight zero, definitions
with a domain quantifier with a kind constraint have weight one and the weight of
quantifiers without a kind constraint is two. The reasoning is that operator definitions
written for a specific PDK are more specific than operator definitions that can be
used with all PDKs.

(2) The number of times quantifiers appear in the return type or operand type of the
definition. The reasoning is that types with quantifiers are more general. A definition
with fewer general types is more specific.

(3) The number of implicit classifications and operand reshapings necessary to use the
definition. To explain the reason for this component, let us assume that we are
multiplying two scalars. A definition that takes two scalars and a definition that
takes two vectors both match. Using this weighing, the definition on scalars is more
specific because it does not require scalar to vector conversion. This is desired because
we assume that the scalar multiplication definition is more specific. The vector
multiplication definition can be used with scalars, vectors, matrices, etc. while the
scalar definition can only be used when the inputs are scalars.

The following example illustrates how multiple matching definitions can coexist:

39

template <domain D : shared3p , type T>

D T[[1]] operator * (D T[[1]] x, D T[[1]] y) {

__syscall (" shared3p :: mul_$T_vec",

__domainid(D), x, y, y);

return y;

}

template <domain D : shared3p , type T>

D T[[1]] operator * (D T[[1]] x, T y) {

D T[[1]] res(size(x));

if (y < 0) {

y = -y;

x = -x;

}

for (T i = 0; i < y; ++i) {

res = res + x;

}

return res;

}

template <domain D : shared3p >

D float [[1]] operator * (D float [[1]] x, float y) {

__syscall (" shared3p :: mulc_float_vec",

__domainid(D), x, y, x);

return x;

}

Let us assume that we are multiplying a private float vector with a public float scalar.
All three definitions can be used. The first two definitions both have a constrained
domain quantifier. The second one has a lower weight because it requires no reshaping
or classification of the second operand. It uses the definitions of addition and negation
(which we assume exist in this example). In the case of additive secret sharing, adding
integer values requires no network communication so this definition is relatively efficient
(if we ignore the overhead of repeated system calls to the addition protocol). Floating
point numbers can not be added locally which is why the third definition uses a more
efficient specialized protocol. Out of the three definitions, the third one will be chosen
because it has the least occurences of quantifiers in the parameters and this is also the
one most likely to be preferred by the programmer.

40

5 Implementation

5.1 Architecture and overview of changes

Figure 21: SecreC compiler architecture

The SecreC compiler1 is implemented in the C++ programming language. Figure 21
shows the architecture of the compiler. The libscc library contains a parser implemented
using flex2 and the GNU bison parser generator3. After parsing, code in the intermediate
representation is generated from the abstract syntax tree. The compiler checks types
during code generation instead of type checking the whole program first. A compiler ex-
ecutable uses the libscc library to generate code in the intermediate representation which
it then compiles to the Sharemind virtual machine assembly language which is com-
piled to the Sharemind virtual machine bytecode using an assembler library. libscc also
contains a framework for statically analysing SecreC programs based on the intermedi-
ate representation [Ris10]. System calls are linked to C procedures implemented in the
Sharemind server modules when the program is loaded by the virtual machine. Most of
the work by the author was in the code generator and type checker. The compiler com-
ponent remaind mostly unchanged. The system in the compiler that generated operator
system call names when compiling intermediate representation arithmetic expressions on
private values, was removed.

The author changed the abstract syntax tree, lexical analyser and parser to allow cast
definitions, operator definitions, protection domain kind definitions with user defined
types and overloaded prefix, postfix, arithmetic assignment and cast expression. Unary
and binary expressions were already overloaded. When the type checker has found a
matching cast/operator definition, the symbol of the definition in the symbol table is
stored in the abstract syntax tree node of the expression. When the code generator has
to compile a procedure call to the definition, it can retrieve the correct definition from
the expression node.

1GitHub - sharemind-sdk/secrec: Sharemind SecreC Compiler and Analyzer https://github.com/

sharemind-sdk/secrec
2flex: The Fast Lexical Analyzer http://flex.sourceforge.net/
3Bison - GNU Project - Free Software Foundation https://www.gnu.org/software/bison/

41

https://github.com/sharemind-sdk/secrec
https://github.com/sharemind-sdk/secrec
http://flex.sourceforge.net/
https://www.gnu.org/software/bison/

5.2 Finding and instantiating matching definitions

The procedure that searches for matching operator definitions first looks for monomorphic
definitions (without template quantifiers) with the name of the operator in the active
symbol table. This fits the search procedure described in Section 4.7. A monomorphic
definition has no domain quantifiers so its domain weight component is less than that
of templates with a domain quantifier. No quantifier variables appear in the parameters
so it also precedes all templates with type quantifiers. This avoids template unification
when a monomorphic definition exists. Monomorphic definitions are ordered according
to the last scoring component in Section 4.7: the number of implicit classifications and
reshapings. It is an error when multiple definitions share the best score.

When no monomorphic definition matches, operator definition templates with the
name of the used operator are looked for. Each definition template is unified with the
types used in the expression. If unification fails the definition is not considered. The
best score and the set of templates with the best score is updated when iterating over
the templates. It is again an error if multiple templates share the best score.

The procedure body of the best matching template is copied, the quantifier variables
are bound to the unified types in the scope of the copied procedure definition and the
procedure is type checked and compiled. We use something similar to the SFINAE
(substitution failure is not an error) principle in C++. If type checking fails (for example,
if the template body is not well-typed), the reported error claims that there is no matching
definition. The error report should not blame the template definition itself because the
error may have been caused by the quantifier variable substitution and the template may
be valid for other substitutions. Template instances are cached so if the same template
is instantiated with the same parameters multiple times, it will only be type checked and
compiled once.

5.3 Types of integer and floating point literals

A problem in the full SecreC language is that there are multiple public integer and
floating point types. There are 8-, 16-, 32- and 64-bit versions of unsigned and signed
integers. This means that it is not clear which public numeric type to assign to a literal
such as 42. Integer and floating point literals are assigned the abstract numeric type
which is a subtype of all numeric types. When comparing types according to the partial
ordering described in Section 4.1, we consider (public, numeric) v (d, t) for all pairs
(d, t) for which public(kind(d), t) is a numeric type.

In an arithmetic expression, operands with the abstract numeric type must be as-
signed a concrete numeric type. If the expression has a context, such as pd shared3p

uint x = y + 1;, the literal 1 is assigned the corresponding public data type of the
context data type. In this case it is public(shared3p, uint) = uint. In a binary ex-
pression with operand types (d1, t1), (d2, t2) the least upper bound of the operand types
(d′, t′) = (d1, t1) t (d2, t2) is computed and the operands with type numeric are assigned
data type public(kind(d′), t′). Essentially, this means that the literal is assigned the cor-
responding public type of the other operand. If the upper bound is > or there is no
corresponding public data type an error is reported.

As an example, let us assume the following PDK definition and domain declaration:

42

kind shared3p {

type bool;

type int64;

type fix64 { public = float64 };

}

domain pd_shared3p shared3p;

The following table illustrates how the numeric data type is replaced in this case:

First operand Second operand Assigned type
public numeric pd shared3p int64 public int64

public numeric pd shared3p fix64 public float64

public numeric pd shared3p bool >

5.4 Implementation details

In this section we describe details about implementing the changes in the SecreC com-
piler.

Data types defined in a protection domain kind definition are represented as a C++
data type. A single value is created for each data type name and added to the global
symbol table. The data type representation includes a mapping from PDK to public
type (to implement public(k, t)). If a data type is defined in multiple protection domain
kinds, the corresponding public types are added to the mapping. The user-defined data
type is also added to a map in the PDK value. The PDK is added to the global symbol
table. This is necessary to check if a type belongs to a PDK (required by the variable
declaration rule in section 4.3) or when processing a domain declaration.

Multi-dimensional arrays are currently represented as a continuous block of memory
with separate symbols containing the number of elements and the sizes of each dimension.
When an array with dimension higher than one is reshaped into a vector to pass to a
operator/cast definition procedure, it is copied and new shape symbols are created. When
a scalar has to be converted to a vector, a vector is allocated that is as large as the other
operand (in the case of binary operators) or has one element (unary operators). The scalar
is assigned to all elements of the vector. Calling a procedure has an overhead because
SecreC is a call-by-value language so the supplied parameters are always copied. This
overhead will be reduced in the future when function and cast/operator calls will be
inlined.

When a value has to be implicitly classified (for example, an operand in a binary
expression), a classify node is inserted into the abstract syntax tree. This node is only
used by the compiler and is never created by the parser.

Before a binary operator is called, we check that the shapes of the supplied operands
match. After the call, we check that the size of the result is the size of the largest param-
eter because it is assumed that operators work point-wise. These conditions can not be
checked statically because the size and shape of an array is dynamic and implementations
of system calls are external to the language.

The result of the call to the operator/cast procedure is copied if the dimensionality
does not match the dimensionality of the definition (for example, when a definition on
vectors is used for point-wise matrix multiplication). The copy is given shape symbols of
the larger input. This is safe because at this point it has been checked that the size is as
expected.

43

In addition to the restrictions on data types in the operator definition typing rule,
the compiler also disallows operator definitions on strings and record types which are
supported in the full SecreC language. This condition was omitted from the typing rule
because it is trivial to check in practice while adding record types to the language would
have complicated the grammar and typing rules. The subset of SecreC used in the
thesis does not have dimensionality quantifiers. In the implementation, dimensionality
quantifiers are forbidden in operator definitions.

44

6 Practical applications

6.1 Practical implications for users of SecreC

SecreC already supports different protection domain kinds. The extensions of this thesis
make using them more convenient. Currently, when a program is executed, all system
calls are linked to their C implementations. The linker reports an error if a system
call which is expected to implement an arithmetic operation is missing. Debugging will
be difficult in this situation because the programmer does not know where the missing
operator was used if the program consists of thousands of lines of code 4. The changes of
this thesis allow the compiler to give compile time errors when an arithmetic expression
uses an operator that is not supported by the PDK. This will make debugging easier
because errors reported by the compiler include the source code location of the incorrect
expression.

SecreC supports different PDKs because they have different performance character-
istics, installation requirements (e.g. the number of parties) and security guarantees. By
considering arithmetic as a black box defined by the PDK module, the programmer can
write the algorithms and logic without considering the differences. For example, if the
programmer has written a linear regression function with the following signature:

template <domain D>

D float [[1]] linearRegression(D float [[2]] independent ,

D float [[1]] dependent)

{

// body omitted

}

then the function can be called with inputs from different protection domains. The
current implementation of the compiler makes this dangerous because if the function uses
operations that are not supported in some PDK, the program will give a runtime error
that will be difficult to debug. With the extensions of this thesis the function body will be
checked after it is instantiated with a concrete protection domain. If it is instantiated with
a domain that misses some operator that is required in the function body the compiler
will give an error. Being able to use the same functions with different PDKs means that
existing code can be reused in different projects with different requirements. If a project
requires the highest level of security, a PDK with active security can be used. If the
passive adversary model is acceptable, the efficient three-party additive secret sharing
PDK can be used. If finding three independent project partners who will host servers is
difficult, a two-party PDK can be used. This allows for high code reuse and flexibility.
Due to overloading, SecreC also allows a polymorphic version of a procedure to co-exist
with a monomorphic version optimised for a specific PDK. The monomorphic version will
be preferred if it matches the types of the inputs.

The extensions of this thesis allow creating new primitive private data types. Alter-
native data types are useful because some protocols have more efficient implementations
when using a specific representation. For example, the current implementation of Se-
creC has special xor uint8, xor uint16, etc data types. Values of this types are shared
bitwise and they are always private. That is, to secret share x, random values x1, x2 are
generated and x3 is computed such that x = x1⊕x2⊕x3, where ⊕ is the XOR operation.

4This problem is exacerbated by the lack of debugging tools.

45

Bitwise operations and comparisons are more efficient on this representation but addition
and multiplication is less efficient so values are sometimes converted into this type before
sorting and converted back to additively secret-shared values after sorting. These data
types can now be described in SecreC without changing the compiler.

Other unusual data types may be required when optimising computations on real
numbers. The additive secret sharing PDK has an implementation of floating point
numbers which uses a representation similar to IEEE 754 [KW14a]. There is also another
set of protocols that uses a combination of secret sharing and Yao’s garbled circuits that
supports the full IEEE 754 specification but is slightly less efficient [PS15]. In some
cases, floating point numbers are prohibitively inefficient and fixed point numbers are
required for implementing efficient algorithms on real numbers. Currently, SecreC only
has float32 and float64 data types which means only one representation can be used
at the same time. It would be useful to have different representations that procedures
can use depending on whether the programmer needs IEEE 754 compatibility, accuracy
or maximum efficiency. These three sets of floating point protocols could all be used by
adding special floating point data types.

It is not reasonable to add every special data type to the compiler. The kind definition
feature described in this thesis allows private data types such as the xor uint types and
different floating point types to be added to the language without changing the compiler.

6.2 Proposed structure for the SecreC standard library

In this section we describe the proposed structure of the SecreC standard library while
taking into account the changes of this thesis.

Every protection domain kind should be defined in a SecreC library module along
with its arithmetic, logic and relational operator definitions and type conversion defini-
tions. For example, a module named shared3p defines a PDK with three-party additive
secret sharing and shared2p defines a PDK with two-party additive secret sharing.

Algorithms that rely on standard arithmetic operations should be programmed using
domain polymorphism and organised into a module with a descriptive name. If more
efficient implementations can be written for some PDK then they should be organised into
a module with the name of the PDK prepended to the name of the generic module. For
example, matrix operations that use standard arithmetic can be implemented in a module
named matrix while an optimised matrix multiplication protocol implemented for the
shared3p PDK can be used to write a more efficient matrix multiplication procedure in
the module shared3p matrix. Currently SecreC does not support hierarchical module
names so we use the shared3p prefix but if support for hierarchical module names was
implemented, the shared3p version would be named shared3p.matrix.

Having the definition of a PDK in a single SecreC module is also useful for doc-
umentation purposes. Currently, Doxygen 5 is used to generate documentation for the
SecreC standard library. The documentation generator could be extend by writing a
program which parses the module defining a PDK and finds the kind definition and all
the operator and cast definitions. This information can be compiled into a table in the
documentation which lists the supported private data types, the operators supported on
each data type and the conversions supported between different data types. This doc-
umentation would reduce the need for trial and error because the programmer can see
which operations in a PDK are supported before writing any SecreC code.

5Doxygen http://www.stack.nl/~dimitri/doxygen/

46

http://www.stack.nl/~dimitri/doxygen/

7 Future work

If a protection domain kind supports all operations on all data types defined in the kind, it
is sufficient to write a single definition for each operator. For example, if we have defined
the kind shared3p then we can define multiplication for all data types in shared3p using
the following operator definition template:

template <domain D : shared3p , type T>

D T[[1]] operator + (D T[[1]] x, D T[[1]] y) {

__syscall (" shared3p :: add_$T_vec",

__domainid(D), x, y, y);

return y;

}

In the system call name string, $T is replaced with the name of the data type bound
to T. This assumes that all the system call names have the same structure and the
number and order of arguments is the same. The problem is that even if just one data
type does not support addition, like booleans, we have to write separate definitions for
all data types. It would be more convenient if we could constrain the domain of the
quantifier T. This could be done using type predicates. The user can specify the types for
which the predicate holds. Template definitions can then use the predicate to constrain
the domains of quantifiers. This is similar to the C++ extension called Concepts Lite
[SSDR13] which allows limiting the set of accepted template parameters. For example,
by using type predicates, the definition of addition could be written as:

template <domain D : shared3p >

predicate IsNumeric <D, int >;

template <domain D : shared3p >

predicate IsNumeric <D, float >;

template <domain D : shared3p , type T> requires IsNumeric <D, T>

D T[[1]] operator + (D T[[1]] x, D T[[1]] y) {

__syscall (" shared3p :: add_$T_vec",

__domainid(D), x, y, y);

return y;

}

Since the predicate is nominative, we can reuse it when defining other operators. Type
predicates could also benefit SecreC programming in general. Currently the standard
library contains polymorphic procedures that actually only work on certain types. For
example, a procedure for algebraic matrix multiplication is defined but it only works
on numeric data types. If a programmer accidentally calls the procedure template with
boolean matrices they will get an error due to some expression in the body of the proce-
dure. They should instead receive an error stating that no matching procedure is found.
A workaround is to define the procedure template with a different name and call it from
monomorphic procedures which are only defined for the supported data types. With type
predicates we could just write a single procedure template as follows:

47

template <domain D : shared3p , type T>

D T[[2]] matrixMultiplication(D T[[2]] x, D T[[2]] y)

requires IsNumeric <D, T>

{

// body omitted

}

Another similar and useful feature would be type level functions. Currently operator
templates with a private and public argument have to be written as follows:

template <domain D : shared3p , type T, type TPub >

D T[[1]] operator * (D T[[1]] x, TPub y) {

// body omitted

}

We can not use T for both the private and public parameter since the public type cor-
responding to T may not be the same. For example, a definition that used T for both
parameters would match when the operands are pd shared3p int and int but not when
they are pd shared3p fix and float. In the case of operator definitions, using two type
variables is sufficient but we may want to use the corresponding public type of a variable
T in the body of a procedure template where the public type does not appear in the
parameters. This is illustrated in the following example:

template <domain D : shared3p , type T>

T[[1]] tabulate(D T[[1]] x) {

T[[1]] shuffled = declassify(shuffle(x));

T greatest = max(shuffled);

T lowest = min(shuffled);

uint length = (uint) (greatest - lowest + 1);

T[[1]] res(length);

for (uint i = 0; i < length; i++) {

res[i] = sum((T) (shuffled == lowest + (T) i));

}

return res;

}

This procedure counts occurences of values in a vector. Counting after declassifying
is more efficient than doing it privately. It leaks the values but we do not know where
each value originated because the input vector is shuffled privately. Unfortunately, this
procedure will not always type check. If we apply it to a vector with type pd shared3p

fix64[[1]], we get a type error because fix64 does not exist in the public domain which
is required on the first line of the body. The workaround is to add a type quantifier for
the corresponding public type:

template <domain D : shared3p , type T, type TPub >

TPub [[1]] tabulate(D T[[1]] x) {

// body omitted

}

If the public type does not appear in the signature of the procedure then we have to add
a parameter to the procedure which is unused in the body (such as TPub proxy) and is
only used to bind the correct type.

48

The type function PublicType<D, T> would evaluate to the corresponding public
type of T. We could then write the definition like this:

template <domain D : shared3p , type T>

PublicType <D, T >[[1]] tabulate(D T[[1]] x) {

// body omitted

}

If the user was able to define type functions, it would also be useful in general. The
SecreC standard library contains procedures that take integers as inputs but need to
convert to floating point numbers due to division or a special function (e.g. logarithm).
We could write the arithmetic mean procedure like this:

typefun FloatFriend <int32 > = float32;

typefun FloatFriend <int64 > = float64;

template <domain D, type T>

D FloatFriend <T> mean(D T[[1]] x) {

return (FloatFriend <T>) sum(x) /

(FloatFriend <T>) size(x);

}

Currently a private operator definition is called for each arithmetic expression. Proce-
dure calls have overhead and procedures are currently optimised independently. A useful
optimisation would be to inline procedure calls. This would reduce procedure call over-
head and would allow the optimiser to work on the whole block where the arithmetic/cast
expression is used. For example, procedure parameters are passed by value which means
they are copied. Intermediate copies could be reduced by an optimisation pass if they are
unnecessary. Internally, all private values are vectors with separate variables describing
the shape of the the private value. When a system call is called, the reshaping from
e.g. matrix to vector is actually unnecessary since the system call only sees the vector.
Reshaping could be possibly removed.

When defining a data type in a protection domain kind it is possible to give the size of
the data type as its serialised. Currently the compiler parses this information but ignores
it. It is always assumed that system calls for memory management (allocation, deallo-
cation, assignment, indexing etc) exist and are named according to a specific pattern.
System calls in SecreC have a significant overhead which is a problem when dealing
with large data. We expect that generating memory management code using the data
type size parameter would be a significant optimisation. The overhead is especially bad
when reordering values in a private vector according to some permutation. This occurs in
many useful algorithms such as privacy preserving database table join. Implementing this
optimisation would also require work in the protection domain kind module implementing
the arithmetic protocols. All the current modules represent values as C++ objects but
this change would require system calls to receive pointers to byte arrays.

49

8 Conclusion

Secure multi-party computation (SMC) allows different parties to compute a function on
shared inputs without leaking their values to the other parties. SecreC is a programming
language designed for writing privacy-preserving programs using SMC. SecreC relies
on the definition of a protection domain kind (PDK) which describes operations for
performing arithmetic with private values. Different cryptographic techniques can be used
to implement a PDK. The choice of PDK depends on the application because different
techniques have different security guarantees, performance characteristics and deployment
requirements. There is no single best PDK for all use cases. Due to this, SecreC
supports multiple PDKs. This thesis allows the set of data types supported by a PDK
and the arithmetic, relational, logic and type conversion operators on these data types
to be defined in the SecreC language. This makes it easier for the programmer to
use different PDKs because the compiler has information about PDKs which can be
used during compiling to check whether types and operators used in a program exist in
the PDK.

Support for defining private data types in a PDK allows extending the SecreC lan-
guage with non-standard private data types. This gives the programmer further flexibility
by allowing to choose between different floating point representations that have a different
balance between accuracy and efficiency or by using private data types that have some
efficient operators to optimise the internals of algorithms.

In this thesis, the author developed a formal type system of a subset of SecreC
with the proposed extensions. The author also changed the type checker and code gen-
erator of the SecreC compiler to accomodate the new features and described practical
applications of the extensions, open problems and possible solutions.

50

References

[ABPP15] David W. Archer, Dan Bogdanov, Benny Pinkas, and Pille Pullonen. Ma-
turity and performance of programmable secure computation. Cryptology
ePrint Archive, Report 2015/1039, 2015. http://eprint.iacr.org/.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: A Sys-
tem for Secure Multi-party Computation. In Proceedings of the 15th ACM
Conference on Computer and Communications Security, CCS ’08, pages
257–266, New York, NY, USA, 2008. ACM.

[BKK+16] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk, and
Riivo Talviste. Students and taxes: a privacy-preserving study using secure
computation. PoPETs, 2016(3):117–135, 2016.

[BKLS14] Dan Bogdanov, Liina Kamm, Sven Laur, and Ville Sokk. Rmind: a tool
for cryptographically secure statistical analysis. Cryptology ePrint Archive,
Report 2014/512, 2014. http://eprint.iacr.org/.

[BLR14] Dan Bogdanov, Peeter Laud, and Jaak Randmets. Domain-Polymorphic
Programming of Privacy-Preserving Applications. In Proceedings of the
Ninth Workshop on Programming Languages and Analysis for Security,
PLAS’14, pages 53–65. ACM, 2014.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure
protocols. In Proceedings of the Twenty-second Annual ACM Symposium
on Theory of Computing, STOC ’90, pages 503–513, New York, NY, USA,
1990. ACM.

[Bog13] Dan Bogdanov. Sharemind: programmable secure computations with prac-
tical applications. PhD thesis, University of Tartu, 2013.

[DN03] Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable effi-
cient multiparty computation from threshold homomorphic encryption. In
CRYPTO, pages 247–264, 2003.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to Play ANY Mental Game.
In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, STOC ’87, pages 218–229, New York, NY, USA, 1987. ACM.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and
Immo Wehrenberg. TASTY: Tool for Automating Secure Two-party Com-
putations. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS ’10, pages 451–462, New York, NY, USA,
2010. ACM.

[Jag10] Roman Jagomägis. SecreC: a Privacy-Aware Programming Language with
Applications in Data Mining. Master’s thesis, Institute of Computer Sci-
ence, University of Tartu, 2010.

[KW14a] Liina Kamm and Jan Willemson. Secure Floating-Point Arithmetic and
Private Satellite Collision Analysis. International Journal of Information
Security, pages 1–18, 2014.

51

http://eprint.iacr.org/
http://eprint.iacr.org/

[KW14b] Toomas Krips and Jan Willemson. Hybrid Model of Fixed and Floating
Point Numbers in Secure Multiparty Computations. In Proceedings of the
17th International Information Security Conference, ISC 2014, volume 8783
of LNCS, pages 179–197. Springer, 2014.

[LDDAM12] John Launchbury, Iavor S. Diatchki, Thomas DuBuisson, and Andy Adams-
Moran. Efficient lookup-table protocol in secure multiparty computation.
SIGPLAN Not., 47(9):189–200, September 2012.

[LR15] Peeter Laud and Jaak Randmets. A domain-specific language for low-level
secure multiparty computation protocols. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-6, 2015, pages 1492–1503. ACM, 2015.

[LWN+15] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi.
ObliVM: A Programming Framework for Secure Computation. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015, pages 359–376, 2015.

[ML98] A. C. Myers and B. Liskov. Complete, safe information flow with decen-
tralized labels. In Security and Privacy, 1998. Proceedings. 1998 IEEE
Symposium on, pages 186–197, May 1998.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - a
secure two-party computation system. In In USENIX Security Symposium,
pages 287–302, 2004.

[MSSZ12] John C Mitchell, Ritu Sharma, Dumitru Stefan, and Jeramy Zimmerman.
Information-flow control for programming on encrypted data. In Computer
Security Foundations Symposium (CSF), 2012 IEEE 25th, pages 45–60.
IEEE, 2012.

[Mye99] Andrew C. Myers. JFlow: Practical Mostly-static Information Flow Con-
trol. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’99, pages 228–241, New York,
NY, USA, 1999. ACM.

[Nat01] National Institute of Standards and Technology (NIST). Advanced En-
cryption Standard (AES). Federal Information Processing Standards Pub-
lications, FIPS-197, 2001.

[Nie09] Janus Dam Nielsen. Languages for secure multiparty computation and to-
wards strongly typed macros. PhD thesis, PhD thesis, University of Aarhus,
Denmark, 2009.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, May 2-6, 1999, Proceeding, pages 223–238, 1999.

52

[PS15] Pille Pullonen and Sander Siim. Combining secret sharing and garbled cir-
cuits for efficient private ieee 754 floating-point computations. In Financial
Cryptography and Data Security - FC 2015 Workshops, BITCOIN, WAHC
and Wearable 2015, San Juan, Puerto Rico, January 30, 2015, Revised
Selected Papers, volume 8976 of LNCS, pages 172–183. Springer, 2015.

[RHH14] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Wysteria: A Pro-
gramming Language for Generic, Mixed-Mode Multiparty Computations. In
Proceedings of the 2014 IEEE Symposium on Security and Privacy, 2014.

[Ris10] Jaak Ristioja. An analysis framework for an imperative privacy-preserving
programming language. Master’s thesis, Institute of Computer Science,
University of Tartu, 2010.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
November 1979.

[SKM11] Axel Schröpfer, Florian Kerschbaum, and Guenter Mueller. L1 - An Inter-
mediate Language for Mixed-Protocol Secure Computation. In Proceedings
of the 35th Annual IEEE International Computer Software and Applications
Conference. COMPSAC’11, pages 298–307, 2011.

[SSDR13] Andrew Sutton, Bjarne Stroustrup, and Gabriel Dos Reis. Concepts lite:
Constraining templates with predicates. Undated pre-publication draft
posted, pages 02–08, 2013.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Foundations of
Computer Science, 1982. SFCS ’08. 23rd Annual Symposium on, pages 160–
164, Nov 1982.

[ZBA15] Yihua Zhang, Marina Blanton, and Ghada Almashaqbeh. Implementing
support for pointers to private data in a general-purpose secure multi-party
compiler. CoRR, abs/1509.01763, 2015.

[ZSB13] Yihua Zhang, Aaron Steele, and Marina Blanton. PICCO: A General-
purpose Compiler for Private Distributed Computation. In Proceedings of
the 2013 ACM SIGSAC Conference on Computer & Communications
Security, CCS ’13, pages 813–826, New York, NY, USA, 2013. ACM.

53

Non-exclusive licence to reproduce thesis and make thesis public

I, Ville Sokk (date of birth: 29th of March 1991),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

An improved type system for a privacy-aware programming language
and its practical applications

supervised by Dan Bogdanov and Jaak Randmets

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 19.05.2016

54

	Introduction
	Problem statement
	Outline
	Author's contribution

	Preliminaries
	Secure computation
	The SecreC programming language
	Problem statement
	Related work
	SMCL
	Fairplay and FairplayMP
	TASTYL
	L1
	DSL of Launchbury et al.
	DSL of Mitchell et al.
	PICCO
	Wysteria
	ObliVM-lang

	Syntax
	Kind definitions
	Operator definitions
	Cast definitions

	Type system
	Value types
	Inference rules and coinduction
	Typing rules
	Kind definitions and domain declarations
	Operator definitions and arithmetic expressions
	Cast definitions and cast expressions
	Unification and ordering of definitions

	Implementation
	Architecture and overview of changes
	Finding and instantiating matching definitions
	Types of integer and floating point literals
	Implementation details

	Practical applications
	Practical implications for users of SecreC
	Proposed structure for the SecreC standard library

	Future work
	Conclusion

