
UNIVERSITY OF TARTU
Faculty of Mathematics and Computer Science

Institute of Computer Science
Computer Science Curriculum

Tiit Pikma

Auditing of Secure Multiparty
Computations

Master’s Thesis (30 ECTS)

Supervisors: Jan Willemson, PhD
Sven Laur, PhD

Tartu 2014

Auditing of Secure Multiparty Computations
Abstract:

Secure multiparty computations allow independent parties to collectively analyze
data without compromising their input’s privacy. This data secrecy is guaranteed
in some security model: in the passive model an adversary can only look at data
visible to it, while in the active model adversaries can actively interfere in the
computations. So from a security standpoint the active model is preferable, but
carries a significant overhead.

This thesis proposes an intermediate model, which builds upon a system that
is secure in the passive model, but audits the computations for active attacks. It
carries the same guarantees provided by the passive model, while attempting to
detect active attacks without being explicitly secure against them.

To facilitate auditing, systems produce audit logs, which can be examined
to detect active malicious behaviour. Audit logging was added to Sharemind,
an existing secure multiparty computation platform that operates in the passive
model, and a prototype audit tool was created to make inspecting the logs during
the auditing process accessible to human auditors with only basic knowledge of
secure multiparty computations. To test the viability of this model, an Internet
voting demo application was created using this modified Sharemind and possible
attacks against this application were analyzed from an auditability standpoint.

The analysis unveiled that since the Sharemind audit logging implementation
evaluates protocols without context, it is possible to automatically verify indi-
vidual protocols and detect computational forgery, but the adversary can perform
semantic forgery. The audit logs do not contain the semantics of the computation
and this can be abused to modify inputs to protocols, effectively modifying the
results. The need to include semantic information about the computation in the
audit became apparent and is set as a goal for future work.

Keywords:

Auditing, secure multiparty computations, Sharemind, prototype.

Turvaliste ühisarvutuste auditeerimine
Lühikokkuvõte:

Turvalised ühisarvutused lubavad sõltumatutel osapooltel ühiseid andmeid ana-
lüüsida ilma sisendi privaatsust rikkumata. Andmete turvalisus tagatakse mõnes
turvamudelis: passiivses mudelis saab vastane ainult vaadelda väärtuseid, mis tal-
le nähtavaks tehakse, samal ajal kui aktiivses mudelis saab vastane aktiivselt ar-

2

vutustesse sekkuda. Seega turvalisuse seisukohalt on aktiivne mudel eelistatum,
ent sellega kaasneb märkimisväärne arvutuslik lisakulu.

See lõputöö pakub välja uue vahepealse turvamudeli, mis võtab aluseks pas-
siivses mudelis turvalise süsteemi ning auditeerib selle arvutusi leidmaks aktiiv-
seid ründeid. Sellel mudelil on samad turvagarantiid mis passiivsel mudelil, kuid
lisaks üritatakse tuvastada aktiivseid ründeid nende vastu ilmutatult kaitstud ole-
mata.

Auditeerimise võimaldamiseks kirjutavad süsteemid auditlogisid, mida saab
uurida aktiivse kuritahtliku tegevuse tuvastamiseks. Töö käigus lisati auditlogi-
mine Sharemindi, olemasolevale turvaliste ühisarvutuste platvormile, mis töötab
passiivses mudelis. Lisaks loodi auditi tööriista prototüüp, mis võimaldab inim-
audiitoritel, kellel on ainult pinnapealne tutvus ühisarvutustega, logisid uurida.
Väljapakutud mudeli testimiseks loodi valimiste demorakendus Sharemindis ja
analüüsiti võimalikke ründeid selle rakenduse vastu auditeeritavuse vaatepunktist.

Analüüs tuvastas, et kuna Sharemindi auditeerimise implementatsioonis vaa-
deldakse protokolle ilma kontekstita, siis on võimalik individuaalsete protokollide
automaatne verifitseerimine ja arvutusliku pettuse tuvastamine, aga vastane saab
läbi viia n-ö semantilist võltsimist. Auditlogid ei sisalda semantilist informatsioo-
ni arvutuste kohta ja seda saab ära kasutada protkollide sisendite muutmiseks ning
selle kaudu arvutuste tulemuste muutmiseks. Selgus vajadus semantilise informat-
siooni kaasamiseks auditeerimise protsessi ning see seati tulevaseks uurimissuu-
naks.

Võtmesõnad:

Auditeerimine, turvalised ühisarvutused, Sharemind, prototüüp.

3

Contents

Introduction 6

1 Background 8
1.1 Secure multiparty computation 8
1.2 Security models . 8
1.3 Sharemind . 9

2 Audited security model 11
2.1 Motivation . 11
2.2 Audit logs and party views . 11
2.3 Human auditors . 12
2.4 Audit logging for Sharemind . 13

3 Auditing tool prototype 14
3.1 Motivation and goals . 14
3.2 Application structure . 14
3.3 Protocol simulation . 17
3.4 Program semantics . 17

4 Internet voting example 20
4.1 Overview . 20
4.2 Client-server protocol . 22
4.3 Audited functions . 23

4.3.1 Checking votes . 23
4.3.2 Calculating results . 25

4.4 Possible attacks and detection 26
4.4.1 Computation forgery . 26
4.4.2 Audit log forgery . 27
4.4.3 Input forgery . 28
4.4.4 Semantic forgery . 29

4

5 Conclusions 31
5.1 Viability of the audited security model 31
5.2 Future Work . 31

References 33

A Log format schema 35

B Source code 37

5

Introduction

Many organizations have collected large amounts of data and wish to analyze it
with regards to information that other, independent organizations hold. However,
none of them wish to share their data with others due to business decisions, reg-
ulations, etc. There exists a need to collectively process data while keeping it
secret. One possible solution for this problem is secure multiparty computation.

Secure multiparty computation is a cryptographic method that allows multi-
ple independent parties to collectively analyze data they hold while keeping each
party’s private data secret. For this, a sharing scheme is applied, which shares the
input parties’ private data between multiple computing parties that do the analysis
without a single one seeing the whole input.

However, since computations involve valuable private data, there is the risk
that some parties attempt to gain unauthorized access to others’ private input.
Multiparty computations are observed in a security model, which describes the
capabilities of the adversary trying to steal the data. If the described adversary is
unable to attack the system, then the system is said to be secure in that model.

Two popular examples of security models are the passive and active model, but
both have their drawbacks. A problem with the passive model is that the adversary
it describes has some restrictions which might not apply in the real world, ignoring
possible active attacks and increasing the risk of data leaking. The active model
covers both passive and active attacks, but implementing security in it carries a
significant computational and organizational overhead.

This thesis proposes an alternative intermediate security model which aug-
ments the passive model with human auditors. After a system which is secure in
the passive model has finished computation, the actions of all computing parties
are audited for active malicious behavior. If none of the audits detect anything
irregular, then that decreases the risk of there having been any active attacks and
increases the probability that no private data was leaked, adding only minimal
additional overhead to the computation.

The thesis is based on the Sharemind multiparty computation platform, which
operates in the passive model. Therefore the thesis uses the sharing scheme and
computation protocols used in Sharemind. An additional issue with Sharemind in

6

particular is the fact that it is closed-source: essentially a black box. Therefore
all parties using this system need to trust its implementation and that it does not
leak any private data to either other parties or the implementers of Sharemind.
Auditing the computations also verifies the operation of the software and attempts
to raise trust in Sharemind.

The contribution of this thesis is the proposal of a new audited security model,
implementation of components necessary for auditing Sharemind applications,
creation of a prototype audit tool to ease auditing, an example electronic vot-
ing application in Sharemind to audit, and analysis of this example application to
evaluate the viability of the new proposed model.

Chapter 1 gives some background on secure multiparty computations, secret
sharing, active and passive security models, and Sharemind. Chapter 2 proposes
the new audited security model and details the necessary components of it. Chap-
ter 3 introduces the prototype audit tool that was created to help human auditors.
Chapter 4 describes an Internet voting application that demonstrates the audited
model, and analyzes possible attacks against it and how auditing helps to detect
those attacks. Chapter 5 draws conclusions. Appendix A presents the format of
files used to store data necessary for auditing. Appendix B references source code
of the prototype tool.

7

Chapter 1

Background

1.1 Secure multiparty computation
Secure multiparty computation [1] is a secure computation method for processing
private data using several parties. Data secrecy is based on secret sharing [2]:
the data being processed is divided into separate opaque shares, which seem ran-
dom and are given to independent parties to hold. A k-out-of-n secret sharing
scheme divides the private value into n shares and the original value can only be
reconstructed from at least k shares.

However unlike with regular (non-homomorphic) encryption, these shares can
still be used to compute some functions on secret values—this is the principle
behind secure multiparty computations. Each party uses their shares as input,
applies some algorithm to them, optionally communicates with the other parties,
and as a result is left with a single share of the function’s output. Combining the
three result shares produces the output of the function without the parties knowing
the actual input values.

This thesis refers to those functions as protocols and a number of them—
including addition, multiplication and declassification, which are used in the fol-
lowing chapters—are given in [3]. These primitive protocols can be composed to
construct more elaborate protocols.

1.2 Security models
When providing private data for secure multiparty computation, none of the par-
ties can be sure that all other parties are honest and will not attempt to discover
their secret information. It could also be that the software implementation of
the protocols is intentionally backdoored or just has unintentional security flaws.

8

Whatever the situation, all possible adverse behaviour is said to be controlled by
the adversary.

Because of this, secure multiparty computation systems are usually designed
to be secure in a specific security model. The two most popular examples are
passive and active models.

In the passive security model, the adversary is considered to be “honest, but
curious”, meaning that it will try to read as much data as it can and try to learn
information about the secret values, but it will not intervene with the protocols. It
will not modify any of the values, block communications, inject messages, etc.

In the active security model, the adversary is dishonest and does everything in
it’s power to attack the system. This can include taking control of one or all other
parties, manipulating the network, etc.

1.3 Sharemind
Sharemind [4] is a complete solution for building practical data processing appli-
cations that use secure multiparty computations. Sharemind Application Server is
the latest iteration of Sharemind. Although it supports multiple sharing schemes
and security models, this thesis will look at the additive three party sharing scheme
in the passive model. Protocols implemented in this configuration are secure if at
most one computing party is under the control of a passive adversary.

The additive secret sharing scheme with three parties is a 3-out-of-3 scheme,
where the private data is encoded as unsigned integers with fixed bit-length, e.g.
32-bit unsigned integers. Each integer is then additively shared using the follow-
ing algorithm:

s1 ← Z2n

s2 ← Z2n

s3 = s− s1 − s2 (mod 2n),

where x ← M denotes that x is a uniformly random value from the set M and n
is the bit-length of the integer type.

The values s1, s2 and s3 are the shares which will be given to three parties.
These shares seem random to the holders, because s1 and s2 are uniformly ran-
domly sampled, and s3 is a value from which two random values have been sub-
tracted. The original secret value can be retrieved by adding the shares together
modulo 2n:

s = s1 + s2 + s3 (mod 2n).

Having less than all three of the shares leaks no information about the original
value.

9

Sharemind applications are written in SecreC [5], a programming language
which is compiled into Sharemind executables containing bytecode for a low-level
assembly language.

Two large components of Sharemind’s framework are the miners and the con-
troller. The miners are computing nodes, each held by a single party, and are
responsible for interpreting the bytecode and executing the computation proto-
cols. The controller is the node that instructs the miners which executable to load,
passes them input parameters, and presents the results.

Among other controller types, Sharemind Application Server features a web
controller module for Node.js [6]. It allows controlling miners from a Node.js
web server in order to create web applications leveraging secure multiparty com-
putations. This will be used in Chapter 4.

10

Chapter 2

Audited security model

2.1 Motivation
The audited security model is an attempt to augment the passive security model in
order to introduce a new pseudo-model as a middle-ground between the passive
and active models. It allows for the system to operate in the passive security
model, but produces information that can be audited after the fact to detect any
active malicious activity. So it does not prevent active attacks, but allows to detect
them.

The audited security model should provide better guarantees than the passive
model, but not as good as the ones in the active model. On the other hand, security
in the active model is complicated to achieve and carries significant overhead—
both computational and organizational—, while the audited model is essentially
the passive model with an extra layer of verifiability on top, protecting against
some real-world attacks that are not covered by the passive model.

This thesis explores viability of the audited security model on Sharemind.

2.2 Audit logs and party views
A key component of the audited security model are audit logs. These are files gen-
erated by the parties of the secure multiparty computation containing details about
the computation protocols executed by the parties. The logs state what computa-
tion protocols were executed, with what input values, what random values were
generated, what messages were sent and received, which party was the recipient
or sender, and what were the results of the computations.

This information is later used to verify that all parties behaved correctly during
the protocols and applied no detectable active attacks. Any protection against

11

eavesdropping is already guaranteed by the passive model that Sharemind operates
in.

These audit logs are not public, as when the adversary has access to all three
audit logs, it can just combine the shares contained in them and retrieve the secret
shared values. So these log files must provide some value individually.

A party’s view is the set of all messages it has sent to or received from remote
computing parties during the execution of a protocol. This view is generated based
on the information contained in the audit logs. These are compared between the
parties to ensure that all messages that were sent were received unmodified or to
detect cases where a party lies about sent or received messages.

Party views cannot be made public either, because seeing all communication
between the three nodes leaks information about the shared values. For example
the multiplication protocol [3] has parties passing their shares to the next one. So
all three shares of a value can be combined from just two parties’ views (as each
party sees two shares).

2.3 Human auditors
The audit logs and party views cannot be made public, but still someone needs
to check them for malicious activities. For this, human auditors are used. Three
human auditors, independent of each other and independent of the computing
parties, are each given access to the audit log of a single party. It is the auditors’
job to verify that, based on the audit logs, all parties behaved correctly.

The first task is to make sure that all protocol computations are correct. To
help with this, they use an audit tool which simulates secure multiparty computa-
tion protocols for them. A prototype of such an audit tool will be introduced in
Chapter 3.

The next step is to ensure that the party views match. The views cannot be
directly compared as then the auditors would see all shares. But since it is only
necessary for them to match, hashes of the views can be compared instead, so as
to not leak any information. Ensuring the views match guarantees that no party
can lie about sent or received messages (given that they are not colluding with
another party).

The last step is to ensure that all parties adhered to the algorithm agreed upon
in the form of an executable program. In Sharemind’s context, this program is a
SecreC script compiled into a Sharemind binary executable. This means that in
addition to verifying that the protocol computations were correct and all sent and
received messages match other parties views, it is necessary to assert that the party
handled inputs, branching, intermediate results, etc. correctly.

If all these checks pass, it mitigates the possibility that an active adversary

12

modified the program and changed the computation process. This gives additional
guarantees to Sharemind’s additive three party passive domain, which normally
operates in only the passive security model.

2.4 Audit logging for Sharemind
Since the Sharemind Application Server did not produce audit logs, it was neces-
sary to add this feature. A very simplistic method for generating audit logs using
log4cpp [7] was added to a small set of protocols—specifically addition, subtrac-
tion, summation, multiplication, and declassification. The source code of these
modifications is not public as Sharemind is a closed source system and including
the modifications is not essential for this thesis.

The log is structured as an Extensible Markup Language (XML) file, whose
schema can be found in Appendix A. Sharemind parallelizes computations to save
on network overhead, so all values are given in vectors, even if they are actually
scalars.

The logs contain information about each invoked protocol separately, exclud-
ing information about how these protocols relate to each other and all other pro-
gram semantics. Sharemind programs start out as SecreC scripts, which are com-
piled to a low-level assembly language stored in bytecode form in an executable,
which in turn is later interpreted by a virtual machine that invokes the necessary
protocols[4]. Including semantic information from the program in the audit logs
would involve modifications to all these low-level components and to the Share-
mind executable file format, which would have to store this extra information.
This was not done in this thesis due to time and resource constraints: the implica-
tions of this are discussed in Section 3.4.

13

Chapter 3

Auditing tool prototype

3.1 Motivation and goals
Parsing the audit logs generated by computing parties manually is practically un-
feasible. In order to help human auditors to review the log files, a prototype of
an auditing tool was created. The aim of the tool is to parse the audit logs and
present them in a more user-friendly way. In addition, it should automatically
verify the computational correctness of protocols contained in the logs to reduce
the workload of the human auditor.

A specific goal of the audit tool (be it a prototype or not) is to have public
source code. This allows everybody to check the implementation of the automatic
log verification and potentially increases trust in the tool. Alternatively, it can be
used to aid in the creation of an independent audit tool.

The source code is referenced in Appendix B.

3.2 Application structure
The prototype auditing tool (nicknamed "Sharemind Player" or "SMPlayer") is a
Python 3 application using the Kivy framework [8] for the graphical user inter-
face.1 It consists of the following Python packages:

smplayer The main Python package of the auditing tool, providing the graphical
application intended to be used by auditors. It contains the description of the
application’s main window in KV language [9] and the logic for graphically
selecting log files to load from the file system.

1There is also a non-interactive command-line interface, which just outputs the log’s view and
whether the automatic verification succeeded or not. This can be used to automatically process
large batches of log files.

14

smplayer.widgets Contains the actual widgets used to construct the user inter-
face. The main (and only exported) widget creates a tree view of header
nodes, each corresponding to a single protocol in the audit log.

The header displays a short summary of the protocol it represents: the name
of the protocol, what were the inputs, what was the logged output, and if it
passes automatic verification (additionally displaying the simulation result
if it does not). For simple, local protocols (e.g. addition) this is sufficient,
as there are no extra details to display.

In case of more complex protocols that require communication between the
parties (e.g. multiplication), the header node also contains a body subnode.
The body displays a detailed description of the protocol, using the actual
values in the audit log to show step-by-step computation.

smplayer.core Contains the core functionality of log parsing, automatically ver-
ifying the logs, and generating the party views.

Log parsing is done using the standard Python ElementTree XML API
"xml.etree.ElementTree" [10]. Each element parsed is used to initialize a
protocol instance.

Automatically verifying the logs is done by simulating all the protocol in-
stances parsed from the logs. If all simulations yield the same results (output
and sent messages) as in the audit logs, then automatic verification succeeds.

Generating party views is done by grouping all sent messages by recipient
and hashing them together. The same is done for all received messages.

smplayer.core.protocols Contains the protocol classes and code for simulating
protocol instances. More details on protocol simulation are given in Sec-
tion 3.3.

smplayer.core and smplayer.core.protocols are independent of
the other packages (i.e. the GUI) and can be used separately. An example of
this is the command-line interface, which shares no code with the main graphical
application except for those two packages.

The prototype uses Python’s standard distutils package [11] for simple
distribution and installation. It also includes a simple custom test command for
running the included unit tests.

A screenshot of the audit tool can be seen in Figure 3.1.

15

Figure 3.1: The Sharemind audit tool prototype displaying an addition and a mul-
tiplication protocol. The prototype actually uses Kivy’s default color scheme of
light colors on a black background, but a custom light color scheme is used for
the screenshots to improve printability.

16

3.3 Protocol simulation
As mentioned, the audit tool simulates the protocols contained in the audit logs to
automatically verify computational correctness. This is done by reimplementing
all supported Sharemind protocols in Python and invoking them with the values
read from the log file instead of communicating with external parties. All protocol
results are cached, so a protocol instance is simulated at most once.

For local protocols, this is simple: read the input to the protocol from the log
file, compute all the steps of the protocol, and check whether the output of the
simulation matches the value recorded in the log file. The currently implemented
local protocols in the tool are addition, subtraction, and summing elements in a
vector. These are all extremely trivial protocols, as in the additively shared scheme
these are just adding or subtracting with a modulus.2

Simulating protocols involving communication between the parties and gen-
erating random values are more complex. In addition to input and output of the
protocol, the audit log needs to contain all sent and received messages. For the
currently implemented non-local protocols (multiplication and declassification)
all generated random values are also sent to another party, so they can be ex-
tracted from the messages. For other protocols, some generated random values do
not appear unmodified in sent messages and need to be logged separately.

The tool simulates a non-local protocol using the input and messages received
from other computing parties to produce the output of the protocol and all mes-
sages sent to other parties. These are compared to the values in the log file to
automatically verify computation.

An explicit goal for the Python reimplementations was to be simple and under-
standable. This way the source code of the reimplementation itself can be verified
by a larger audience. To achieve this, the code is written in a high-level, functional
style made possible by Python. It is possible to draw direct parallels between the
protocol source code and algorithm descriptions in published papers (e.g. [3]).

3.4 Program semantics
The current format of the log file contains only the values used in individual pro-
tocol, excluding context and program semantics (see Section 2.4). This means
that looking at the values input to a protocol without additional information, it
is not possible to determine if this value is an external input to the program, the
output of a previous protocol, or simply a constant. It is also difficult to map lines

2Currently all simulations in the audit tool are made modulo 232, but mechanisms are in place
to simply change this either globally or per protocol instance.

17

from the audit log to expressions in the original program (in case of Sharemind,
the SecreC script).

As a result of this, it is not possible for the automatic log verification to check
if the output value of one protocol, which is supposed to be used as the input
to another one, is done so without modifications. Take for example the simple
expression

a+ b− c,

where a, b, and c are secret shared scalar values. Evaluating this expression would
create the following two audit log entries:
<add>

<input>
<vector>

<value>
<!-- share of a -->

</value>
</vector>
<vector>

<value>
<!-- share of b -->

</value>
</vector>

</input>
<output>

<vector>
<value>

<!-- share of a + b -->
</value>

</vector>
</output>

</add>

and
<sub>

<input>
<vector>

<value>
<!-- share of a + b -->

</value>
</vector>
<vector>

<value>
<!-- share of c -->

</value>
</vector>

</input>
<output>

18

<vector>
<value>

<!-- share of a + b - c -->
</value>

</vector>
</output>

</sub>

While automatic log verification can check that the individual protocols are
indeed correct, it does not know to how check that the output value of the addition
protocol must match the first input value of the subtraction protocol, or specif-
ically, that ./add/output/vector/value must match ./sub/input/
vector[1]/value. This enables semantic forgery, which will be discussed in
Section 4.4.4.

Due to the same problem, one cannot distinguish external inputs to the pro-
gram from values produced internally, which means the inputs cannot be included
in a party’s view and input correctness is not handled. This enables input forgery,
which will be discussed in Section 4.4.3.

Therefore complete correctness of the log in its current format cannot be au-
tomatically analyzed and needs to be verified by a human auditor. Yet this is only
viable for simple programs and small amounts of data, as all relations would need
to be meticulously checked. The effects of this will be explored more closely in
Section 4.4.

An alternative to including semantic information in the log file directly would
be to give the audit tool access to the SecreC program that was compiled or the
bytecode that was executed and let it extract semantic information from it. How-
ever, this would entail reimplementing the parsers for SecreC or the assembly
language, which is arguably a larger task than modifying existing low-level com-
ponents in Sharemind. An idea to simplify this would be to modify the SecreC
compiler such that it writes the abstract syntax tree of the program to a file, and the
audit tool parses this instead: this avoid the need for the audit tool to understand
SecreC. Figuring out the best solution and implementing it is future work.

19

Chapter 4

Internet voting example

4.1 Overview
To provide a practical test scenario for the audited security model and audit tool
prototype, a simple demonstration of Internet voting on the Sharemind Applica-
tion Server was created. Key functions of this application are audited and checked
for active attacks.

A web page presents voters with multiple candidates grouped into parties and
they have the chance to cast a vote for a single candidate (see Figure 4.1). Parties
are there just for information and don’t affect results: votes are tallied per candi-
date. A separate web page presents the tally of votes cast so far (see Figure 4.2).
Authenticating voters is not covered in this example as that can be achieved with
external means.

The candidates on the web pages are not hard-coded, but are generated from
a JavaScript Object Notation (JSON) file containing information about the can-
didates. The functions used to check if a ballot is valid and to calculate election
results generate audit logs that can be viewed with the prototype audit tool.

On a technical level the Internet voting example is a web application. A
Node.js web server instance serves static content such as the candidate list, the re-
sult view, and client-side JavaScript. The client’s browser (directed by JavaScript)
uses WebSockets [12] (via socket.io [13]) to connect to three different Node.js
instances (not the one sharing static content), each belonging to a different party,
and communicates using the client-server protocol given in Section 4.2.

The Node.js instances are running Sharemind web controller modules, which
act as the servers in the client-server protocol. The controllers handle connect-
ing to Sharemind Application Server miner instances, passing messages between
them and the client, and running Sharemind executables on the miners. The three
miners handle communicating with each other independently of the controllers

20

Figure 4.1: Web page displaying list of candidates grouped by parties (the only
“party” that can be seen here is “Riigivanem”).

Figure 4.2: Web page displaying a tally of the votes cast.

21

Figure 4.3: An overview of the components involved in the Internet voting exam-
ple and communication between them.

(see Figure 4.3).
The source code of this demo application is not included with this thesis as it

can not be used without Sharemind miners and the Node.js controller module, so
it is not useful on its own.

4.2 Client-server protocol
The client-server protocol consists of three server functions that the client can
invoke: generating cryptographically secure randomness, submitting the vote, and
retrieving the election results.

Because the randomness generated by JavaScript is not specified to be cryp-
tographically secure1, the servers provide a function to ask for cryptographically
secure randomness. This method was first used in [14].

The client sends a public integer to the parties, containing the number of ran-
dom bytes it wishes. Each miner generates the number of cryptographically secure

1There is currently a W3C working draft proposing a web cryptography API for browsers
(http://www.w3.org/TR/WebCryptoAPI/), which would also include cryptographically
secure pseudo-random number generators, but this is not widely supported yet.

22

http://www.w3.org/TR/WebCryptoAPI/

random bytes requested and sends them to the client. The client then combines the
three different random byte vectors to obtain secure random bytes. It uses these
bytes to initialize a local JavaScript pseudo-random number generator based on
counter-mode AES, which will be used as the source for all further randomness.

After the client has selected a candidate, the client-side JavaScript forms a
ballot. The ballot is a vector of 32-bit unsigned integers2 which represents the
list of candidates: the index corresponding to the candidate the client voted for
contains the value 1, while all other elements in the vector have a value of 0.

So for example, if the election contained five candidates named Candidatei,
where i = 1 . . . 5, then the vector [0, 0, 0, 1, 0] would be a ballot containing a
vote for Candidate4. When additively sharing vectors, each element is shared
separately, so a possible additive sharing of this ballot would be

s1 = [3050374495, 3715785323, 1716321425, 774040719, 2595299194],

s2 = [1677317558, 3563153009, 1672686238, 1096563566, 1245860233],

s3 = [3862242539, 1310996260, 905959633, 2424363012, 453807869].

The ballot is additively shared for three parties and each share is sent to a
different server. The servers collectively verify that the vote on the ballot is valid
(using the function described in Section 4.3.1) and store their individual shares in
their respective databases. The client is notified of success. If the vote was not
valid, the client is sent an error message.

When the client asks for the results of the elections, the parties sum up the
votes given to each candidate, declassify the result to make it known to all parties,
and send it to the requesting client.

Protocol progress is displayed to the voter on the web page per miner. See
Figure 4.4.

4.3 Audited functions
The two interesting functions to audit in this example are the vote validity check-
ing and election result calculation functions.

4.3.1 Checking votes
As mentioned in the Section 4.2, a ballot is a vector with length equal to the num-
ber of candidates in the election, exactly one value 1 representing the candidate

2Although is is possible to use 8-bit integers or even plain bit strings here, that would mean
that the shares need to be cast to a larger data type when calculating results later. Starting off with
32-bit integers avoids that.

23

Figure 4.4: Protocol progress of miner 1 reported to the client during voting (left)
and displaying results (right).

voted for, and all other values 0. Since calculating the results is just summing up
the votes the candidates received, a malicious client could have more than one 1
on the ballot, effectively voting for multiple candidates, and/or have values larger
than 1, giving multiple votes to a single candidate.

Therefore it is necessary to validate the votes on cast ballots. A vector of 32-bit
unsigned integers contains a valid vote if it satisfies the following conditions:

The vector’s length is equal to the number of candidates in the election.
This is trivial to check publicly as the length of an additively shared vector
is not secret. Therefore this check does not need to be audited.

All values in the vector are either 0 or 1.
Although Sharemind supports comparing secret shared values to constants,
that is an expensive protocol compared to the following alternative: check
that each value x in the vector satisfies

x2 − x ≡ 0 (mod 232),

as this holds iff x = 0 ∨ x = 1.

Proof.

x2 − x ≡ 0 (mod 232)

x(x− 1) ≡ 0 (mod 232) ⇔ x(x− 1)
... 232

24

Figure 4.5: Checking if a shared value is zero or one. Note that having the end
result equal to zero does not mean that the shared value was zero, but is a confir-
mation that it was either zero or one.

x and x− 1 are two consecutive integers, so one must be even and the other
one odd. All factors of 232 are even, so

x
... 232 ∨ x− 1

... 232,

depending on if x is even or x− 1 is even.

If x
... 232, then x ≡ 0 (mod 232). If x−1

... 232, then x ≡ 1 (mod 232).

The value x2 − x is calculated on the shares, keeping the input and all
intermediate values secret, the result is declassified and publicly compared
to 0.3

An example of how this calculation looks in the audit tool prototype can be
seen in Figure 4.5.

There is exactly one value 1.
Since it was already confirmed that all values in the vector are 0 or 1 and re-
alistically there are less than 232 candidates, it is possible to verify that there
is exactly one value 1 on the ballot by summing up the vector, declassifying
the result, and publicly checking that the result is 1.

If any of the above conditions is not satisfied, then the honest parties will reject
the ballot.

4.3.2 Calculating results
The votes are stored in a simple database containing a single table with a column
for each candidate and rows containing the votes cast. When requested to tally
the votes, the parties retrieve a column from their databases and sum it up to get
the number of votes the candidate corresponding to that column received. This is

3If the declassified result is not 0, then that leaks information about the input, but this is not a
problem since the system does not worry about keeping the inputs of malicious clients secret.

25

Figure 4.6: Calculating the result of two votes given to two candidates. The end
result means that both candidates received a single vote.

repeated for all candidates and the results are stored in a vector in the same order
as the candidates were in the votes cast. This vector is then declassified to make
the election results public.

In the audit log, this will appear as a summing operation per candidate, each
having as input a vector with as many elements as there are votes cast, and a single
declassification operation. A minimal example with two candidates and two total
cast votes can be seen in Figure 4.6.

A better approach for counting votes would be to iterate over the database
rows, setting the first row as the initial accumulator and adding the other rows to it
element-wise. The result would be the same as described above, yet this approach
requires less memory and allows (re-)verifying the votes before counting without
reading all columns into memory. But at the time of creating this example, the
Sharemind database module did not support reading rows from the database—
only columns—so this was not possible without modifications to the database
module, which were delayed to a later time.

4.4 Possible attacks and detection
This section will discuss the potential types of attacks that the adversary could use
to alter the election results and how the proposed audit logs and tools are able to
detect them.

4.4.1 Computation forgery
The simplest way to forge some result is just to lie about the computation result.
Since the ballots are additively shared vectors of integers, they can be easily mod-
ified: if a value is added or subtracted from a share, then that will modify the
shared value by the same amount in the same direction. One possible attack vec-
tor would be to change the sum of votes given to a specific candidate. At this point
assume that everything is logged properly, i.e. the inputs in the log entry of the
summing operation are correct, but the output is a lie.

26

Figure 4.7: An example of computation forgery, where the result is incremented
by one.

When a candidate has received only one vote from two cast ballots, but a party
lies that it received both, the audit log has the following entry:
<sum>

<input>
<vector>

<value>
<!-- share of 1 -->

</value>
<value>

<!-- share of 0 -->
</value>

</vector>
</input>
<output>

<vector>
<value>

<!-- (share of 1 + 0) + 1 -->
</value>

</vector>
</output>

</sum>

The same party would also have to lie that another candidate got one vote less,
otherwise it would be obvious that there is an extra vote.

The audit logging model and audit tool were devised to solve this specific
problem. The tool parses the audit log and simulates the protocol to automatically
verify that the computation is correct. If the simulated result does not match the
logged result, then a failure notice is displayed, making it obvious that something
is wrong immediately after loading the file. Figure 4.7 shows how the above
example looks in the prototype audit tool.

4.4.2 Audit log forgery
An obvious idea for augmenting computation forgery is to lie in the audit logs,
i.e. modify the output value as discussed in the previous section, but log it and
all following computations without the modification. Thus when inspecting that
party’s audit log alone, everything seems correct and no forgery can be detected.

This is where party views come in: as soon as a protocol involving communi-
cation between parties is encountered, there is a discrepancy between the different

27

Figure 4.8: Hashes of messages sent and received are displayed at the top of the
application’s main window.

parties’ logs. The value the modified log claims to have sent does not match with
the one the receiving party’s log claims to have gotten (given that the receiving
party is not colluding with the forger). So it is obvious that one of those logs
has a forged entry. In the Internet voting example, the last protocol of both au-
dited functions is declassification, so there is always communication in the end to
trigger this situation.

In the audit tool all messages sent to a party are concatenated and hashed, as
are all messages received from a party. These hashes are displayed at the top of the
application’s main window (see Figure 4.8) and can be freely compared between
audit logs without leaking information about the messages sent or received. It is
the human auditors’ job to verify that hashes of the parties’ log files match.

A separate issue here is determining which log is lying—the one that sent
a value or the one that received a different value—, but that is not explored here.
The important part is that the fact of audit log modification is apparent and actions
can be taken, e.g., discard all votes and start over with a a set of three new parties.

4.4.3 Input forgery
While modifying the output of a protocol is not possible without being caught
by automatic verification or a simple comparison of view hashes, it is possible
to modify the inputs to the program. All parties receive their shares of the ballot
directly from the client without anybody else seeing them and as such have the
opportunity to modify them.

As discussed in Section 3.4, with the current audit logging solution it is not
possible to automatically identify external input values, because the semantics of
the values are not known. As a result of this there is no way to automatically
protect against input forgery. However, if the audit tool would have access to
semantic information, it could include the external inputs in the party’s view and
enable the following simple example scheme to detect input forgery.

Before sending the secret shares to the parties, all clients sign the shares. The

28

receiving party verifies the signature, logs the share, strips the signature from it,
and then passes it to the Sharemind miner. Then when later auditing the Share-
mind logs, the auditor can check that the external inputs to the audited function
match the shares logged by the receiver. Of course this signature verification,
stripping, and logging would also have to be audited.

This signature scheme helps detect forged inputs to the miners. However—in
the current voting demo implementation—after vote verification is done, a party
can forge inputs to the tallying function. To detect this, the set of valid votes from
the vote verification function needs to be compared to the input to the tallying
function. If we have access to semantic information, we know which values in
the verification function are valid votes: we just sort them, concatenate them, and
hash them together. Then we do the same with the inputs to the tallying function4

and have the auditor verify that these hashes match. If they do, then the inputs to
the audited functions could not have been forged.

4.4.4 Semantic forgery
Because the protocols in the audit log are automatically examined without con-
text, it is possible to carry out semantic forgery, i.e. not adhere to the agreed upon
executable program. The adversary is not completely free to do what it wants, as
it still needs to invoke the same protocols in the same order to maintain compat-
ibility with the honest miners executing the proper program, but it still has some
options. A simple example was already given in Section 3.4 when calculating
a+ b− c. A more relevant example is counting the votes a candidate received and
declassifying them.

A malicious party sums up the votes given to a candidate correctly (to not get
caught by automatic verification), but modifies the result values before declassi-
fying them: some votes are removed from some candidates and some votes are
added to others. All protocol computations are correct, but the output set from the
summing protocols does not match the input set of declassification.

Without extra semantic information about which outputs of protocols should
be used as inputs to other protocols, and which values are external inputs or even
constants, it is impossible to automatically detect this forgery. As with input
forgery, the attack can be detected by adding semantic understanding of the exe-
cuted program to the audit tool.

One option for adding semantic information (presented in Section 2.4) is to
include it in the log file, making it the miner’s responsibility to log extra semantic
information about the program it is executing. Although there is a possibility here

4This means reading the vote rows from the database, which requires improvements to the
database module as discussed in Section 4.3.2.

29

for the miner to forge the logs, this information would have to match for all three
parties, since they are all executing the same program. Therefore a forgery could
be easily detected by comparing the semantic information of the three different
logs.

Semantic forgery is very similar to input forgery: the difference being that the
inputs are not from external sources, but constants and/or outputs from previous
protocols. Therefore being able to detect semantic forgery also helps detecting
input forgery. However, since input forgery deals with external sources, it still has
the added question of verifying if the inputs match what the voters sent.

30

Chapter 5

Conclusions

5.1 Viability of the audited security model
As shown in Sections 4.4.1 and 4.4.2, with the current implementation of Share-
mind audit logging and the prototype audit tool, the audited security model is able
to detect cases of computation forgery and log file forgery.

However, that is not enough to detect all attacks an active adversary can carry
out. In Sections 4.4.3 and 4.4.4 input forgery and semantic forgery were dis-
cussed, respectively, which allow to modify the results of the multiparty compu-
tation without being practically detected.

Thus in its current implementation, the audited security model does not offer
any additional benefits to the passive model if the adversary is aware that the
log files will be audited, which it realistically is. On the other hand, if the log
files or audit tool would be augmented with semantic information as discussed in
Sections 2.4 and 3.4, then it would be possible to carry out automatic detection of
input and semantic forgery. This would make the audited security model viable
and offer the benefit of being able to detect active adversaries in the passive model.
However, including semantic information in Sharemind’s audit logs was not done
in this thesis due to resource constraints and the amount of work required not only
by this thesis’ author, but also by the developers of Sharemind.

5.2 Future Work
Obviously, the first future step would be to introduce semantic information to
the current logging implementation. This would allow demonstrating automatic
detection of active adversaries and make the audited security model practically
useful.

31

Currently audit logging was introduced to Sharemind on a per-protocol basis:
each protocol had to be modified to write out logging information. An improve-
ment would be to generate this information automatically. In addition to providing
logging information for all protocols, this would keep protocol code cleaner as it
would not contain any audit logging specifics. A promising way to do this is the
protocol domain-specific language being developed for Sharemind [15].

An additional future question is the detection of the malicious party in case
some parties’ views do not match. If the views do not match, then that reveals that
a value was not modified, but not which party modified it. This can be trivial for
some protocols, because a value must be sent to multiple parties and the majority
wins, but is more difficult in other cases, where only two parties see a value.

32

References

[1] David Chaum, Ivan Damgård, Jeroen van de Graaf, Multiparty computations
ensuring privacy of each party’s input and correctness of the result. CRYPTO,
1987.

[2] Adi Shamir, How to share a secret. Communications of the ACM 22, 1979.

[3] Dan Bogdanov, Margus Niitsoo, Tomas Toft, Jan Willemson, High-
performance secure multi-party computation for data mining applications.
International Journal of Information Security 11(6), 2012.

[4] Dan Bogdanov, Sharemind: programmable secure computations with practi-
cal applications. PhD thesis, University of Tartu, 2013.

[5] Roman Jagomägis, SecreC: a Privacy-Aware Programming Language with
Applications in Data Mining. Master’s thesis, University of Tartu, 2010.

[6] Node.js, http://nodejs.org/. Last accessed May 26, 2014.

[7] Log for C++ Project, http://log4cpp.sourceforge.net/. Last ac-
cessed May 26, 2014.

[8] Kivy: Crossplatform Framework for NUI, http://kivy.org. Last ac-
cessed May 26, 2014.

[9] Kv language, http://kivy.org/docs/guide/lang.html. Last ac-
cessed May 26, 2014.

[10] xml.etree.ElementTree—The ElementTree XML API, https:
//docs.python.org/3/library/xml.etree.elementtree.
html. Last accessed May 26, 2014.

[11] distutils—Building and installing Python modules, https://docs.
python.org/3/library/distutils.html. Last accessed May 26,
2014.

33

http://nodejs.org/
http://log4cpp.sourceforge.net/
http://kivy.org
http://kivy.org/docs/guide/lang.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html

[12] Ian Fette, Alexey Melnikov, RFC 6455: The WebSocket Protocol. IETF,
2011. http://tools.ietf.org/html/rfc6455. Last accessed May
26, 2014.

[13] Socket.IO: the cross-browser WebSocket for realtime apps, http://
socket.io/. Last accessed May 26, 2014.

[14] Riivo Talviste, Deploying secure multiparty computation for joint data
analysis—a case study. Master’s thesis, University of Tartu, 2011.

[15] Peeter Laud, Alisa Pankova, Martin Pettai, Jaak Randmets, Specifying
Sharemind’s Arithmetic Black Box. Proceedings of the First ACM Workshop
on Language Support for Privacy-enhancing Technologies, 2013.

34

http://tools.ietf.org/html/rfc6455
http://socket.io/
http://socket.io/

Appendix A

Log format schema

The XML schema of the audit logs generated by the modifications introduced to
the Sharemind Application Server and parsed by the prototype audit tool.
<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- All data is presented in vectors to enable SIMD. -->
<xs:complexType name="Vector">

<xs:sequence>
<xs:element name="value" type="xs:long"

minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<!-- An information block of a protocol instance.
Just a sequence of Vectors. -->

<xs:complexType name="Block">
<xs:sequence>

<xs:element name="vector" type="Vector"
minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<!-- A Block containing messages sent to or received
from other nodes. -->

<xs:complexType name="Messages">
<xs:complexContent>

<xs:extension base="Block">

<!-- Who sent/received this block of messages? -->
<xs:attribute name="node">

<xs:simpleType>
<xs:restriction base="xs:string">

35

<!-- Sent to/received from the next party. -->
<xs:enumeration value="next"/>

<!-- Sent to/received from the previous party. -->
<xs:enumeration value="prev"/>

<!-- Sent to all remote nodes. -->
<xs:enumeration value="remote"/>

<!-- Received from all computing nodes. -->
<xs:enumeration value="computing"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<!-- A protocol instance. -->
<xs:complexType name="Protocol">

<xs:sequence>
<xs:element name="input" type="Block"/>

<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="send" type="Messages"/>
<xs:element name="recv" type="Messages"/>

</xs:choice>

<xs:element name="output" type="Block"/>
</xs:sequence>

</xs:complexType>

<!-- Root element of the audit log. -->
<xs:element name="audit">

<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="add" type="Protocol"/>
<xs:element name="sub" type="Protocol"/>
<xs:element name="sum" type="Protocol"/>
<xs:element name="mult" type="Protocol"/>
<xs:element name="declassify" type="Protocol"/>

</xs:choice>
</xs:complexType>

</xs:element>

</xs:schema>

36

Appendix B

Source code

The source code for the audit tool prototype is publicly available on GitHub:
https://github.com/sharemind-sdk/computation-audit.

37

https://github.com/sharemind-sdk/computation-audit

Non-exclusive licence to reproduce thesis and make thesis public

I, Tiit Pikma (date of birth: 12.07.1989),

1. herewith grant the University of Tartu a free permit (non-exclusive licence)
to:

1. 1. reproduce, for the purpose of preservation and making available to
the public, including for addition to the DSpace digital archives until
expiry of the term of validity of the copyright, and

1. 2. make available to the public via the web environment of the University
of Tartu, including via the DSpace digital archives until expiry of the
term of validity of the copyright,

“Auditing of Secure Multiparty Computations”
supervised by Jan Willemson and Sven Laur.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intel-
lectual property rights or rights arising from the Personal Data Protection
Act.

Tartu, 26.05.2014

	Introduction
	Background
	Secure multiparty computation
	Security models
	Sharemind

	Audited security model
	Motivation
	Audit logs and party views
	Human auditors
	Audit logging for Sharemind

	Auditing tool prototype
	Motivation and goals
	Application structure
	Protocol simulation
	Program semantics

	Internet voting example
	Overview
	Client-server protocol
	Audited functions
	Checking votes
	Calculating results

	Possible attacks and detection
	Computation forgery
	Audit log forgery
	Input forgery
	Semantic forgery

	Conclusions
	Viability of the audited security model
	Future Work

	References
	Log format schema
	Source code

